1
|
Yin YJ, Wang XW, Lu WQ, Chen ZY, Fu JY, Ren KF, Ji J. Adhesive polyelectrolyte coating on PLGA particles prolongs drug retention to vessel lesion. J Control Release 2025; 378:949-960. [PMID: 39733912 DOI: 10.1016/j.jconrel.2024.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Restenosis, the re-narrowing of blood vessels after drug-coated balloons (DCBs), remains a major clinical issue. While rapamycin is the current clinical option for preventing restenosis due to its effectiveness and low toxicity, its delivery is limited by poor tissue absorption and rapid clearance, leading to suboptimal drug retention. Here, we developed the adhesive-polyelectrolyte-coated poly(lactic-co-glycolic acid) (PLGA) particles using in-situ UV-triggered polymerization, encapsulating rapamycin. This system combines PLGA's sustained release with a robust adhesive coating that enhances vascular wall binding, by hydrogen bonding and covalent bonding. Rapamycin retention improved by 835 % in vitro (1 week) and 525 % in vivo (4 weeks) compared to uncoated particles. This approach offers a promising strategy to enhance rapamycin delivery, improving the safety and efficacy of DCBs in treating vessel obstruction.
Collapse
Affiliation(s)
- Yi-Jing Yin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xing-Wang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wei-Qi Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhao-Yang Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Jia-Yin Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
2
|
Khalil KD, Bashal AH, Habeeb T, Kebeish R, Abu-Dief AM. Multifunctional lanthanum oxide-doped carboxymethyl cellulose nanocomposites: A promising approach for antimicrobial and targeted anticancer applications. Int J Biol Macromol 2024; 283:137495. [PMID: 39528180 DOI: 10.1016/j.ijbiomac.2024.137495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
This study presents the synthesis and characterization of lanthanum oxide (La₂O₃)-doped carboxymethyl cellulose (CMC) nanocomposites via a solution casting method, designed to offer an eco-friendly, multifunctional material with significant potential in biomedical applications. Structural analysis using FTIR, XRD, and EDX confirmed successful La₂O₃ integration, with FTIR spectra indicating a distinctive LaO stretching peak at 628.2 cm-1, XRD patterns revealing enhanced crystallinity with notable peaks at 16.6°, 27.6°, and 49.8°, and EDX showing a uniform lanthanum distribution with a 10.41 mass% concentration. These enhancements in structural stability and crystalline properties underscore the composite's functional robustness. Biological assessments revealed the composite's substantial antimicrobial efficacy, demonstrating inhibition zones up to 31 mm against pathogenic strains such as E. coli, S. aureus, E. faecalis, K. pneumoniae, and C. albicans at a 15 wt% La₂O₃ concentration-surpassing conventional antimicrobial agents. Minimum inhibitory concentration (MIC) tests supported these findings, showing MIC values as low as 7.82 μg/mL, further validating the composite's heightened antimicrobial potency compared to pure CMC. In vitro cytotoxicity assays indicated selective anticancer effects of the La₂O₃/CMC nanocomposites, with IC₅₀ values of 327.7 μg/mL and 189.8 μg/mL against PC-3 prostate and A549 lung cancer cells, respectively. Remarkably, the composite showed minimal impact on normal lung fibroblasts (Wi-38), with an IC₅₀ value of 956.8 μg/mL, emphasizing its selectivity towards cancer cells. Collectively, these results highlight the La₂O₃/CMC composite as a biocompatible and multifunctional material suitable for both antimicrobial and targeted anticancer applications, aligning with the growing demand for safe, effective biomedical solutions.
Collapse
Affiliation(s)
- Khaled D Khalil
- Department of Chemistry, Faculty of Science in Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ali H Bashal
- Department of Chemistry, Faculty of Science in Yanbu, Taibah University, Yanbu 46423, Saudi Arabia.
| | - Talaat Habeeb
- Department of Biology, Faculty of Science in Yanbu, Taibah University, Yanbu 46423, Saudi Arabia.
| | - Rashad Kebeish
- Department of Biology, Faculty of Science in Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed M Abu-Dief
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah 30002, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt.
| |
Collapse
|
3
|
Maia KCB, Densy Dos Santos Francisco A, Moreira MP, Nascimento RSV, Grasseschi D. Advancements in Surfactant Carriers for Enhanced Oil Recovery: Mechanisms, Challenges, and Opportunities. ACS OMEGA 2024; 9:36874-36903. [PMID: 39246502 PMCID: PMC11375729 DOI: 10.1021/acsomega.4c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024]
Abstract
Enhanced oil recovery (EOR) techniques are crucial for maximizing the extraction of residual oil from mature reservoirs. This review explores the latest advancements in surfactant carriers for EOR, focusing on their mechanisms, challenges, and opportunities. We delve into the role of inorganic nanoparticles, carbon materials, polymers and polymeric surfactants, and supramolecular systems, highlighting their interactions with reservoir rocks and their potential to improve oil recovery rates. The discussion includes the formulation and behavior of nanofluids, the impact of surfactant adsorption on different rock types, and innovative approaches using environmentally friendly materials. Notably, the use of metal oxide nanoparticles, carbon nanotubes, graphene derivatives, and polymeric surfacants and the development of supramolecular complexes for managing surfacant delivery are examined. We address the need for further research to optimize these technologies and overcome current limitations, emphasizing the importance of sustainable and economically viable EOR methods. This review aims to provide a comprehensive understanding of the emerging trends and future directions in surfactant carriers for EOR.
Collapse
Affiliation(s)
- Kelly C B Maia
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| | | | - Mateus Perissé Moreira
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| | - Regina S V Nascimento
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| | - Daniel Grasseschi
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Fan X, Huang J, Zhang W, Su Z, Li J, Wu Z, Zhang P. A Multifunctional, Tough, Stretchable, and Transparent Curcumin Hydrogel with Potent Antimicrobial, Antioxidative, Anti-inflammatory, and Angiogenesis Capabilities for Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9749-9767. [PMID: 38359334 DOI: 10.1021/acsami.3c16837] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The treatment of diabetic chronic wounds is still faced with great challenges, mainly due to wound infection, excessive inflammation, and peripheral vascular disease in the wound area. Therefore, it is of great importance to develop a novel multifunctional hydrogel with high efficiency to accelerate diabetic wound healing. Curcumin (Cur), a Chinese herbal, has shown great potential in enhancing the healing of diabetic chronic wounds because of its immunomodulatory and pro-angiogenic properties. However, its low aqueous solubility, poor bioavailability, and chemical instability have limited its clinical applications. To address these current bottlenecks, novel poly(vinyl alcohol) (PVA)-chitosan (CS)/sodium alginate (SA)-Cur (PCSA) hydrogels were prepared for the first time, and they demonstrated all of the above intriguing performances by the Michael addition reaction of CS and Cur. PCSA hydrogels show multiple dynamic bonds, which possess strong mechanical properties (tensile stress: ∼0.980 MPa; toughness: ∼258.45 kJ/m3; and compressive strength: ∼7.38 MPa at strain of 80%). These intriguing performances provided an optimal microenvironment for cell migration and proliferation and also promoted the growth of blood vessels, leading to early angiogenesis. Importantly, the experimental results demonstrated that PCSA hydrogels can effectively transform pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages without the need for additional ingredients in vitro. Benefiting from these characteristics, a full-thickness diabetic wound in a rat model demonstrated that PCSA hydrogels can effectively accelerate wound healing via ROS-scavenging, downregulation of IL-1β, and upregulation of CD31 expression, resulting in angiogenesis and collagen deposition. This strategy not only provides a simple and safe Cur-based hydrogel for diabetic wound healing but also highlights the significant potential for the development of high-performance biomaterials for promoting diabetic wound healing using traditional Chinese medicine.
Collapse
Affiliation(s)
- Xianmou Fan
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Wanjun Zhang
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zhihong Su
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Jin Li
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zeyong Wu
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Peihua Zhang
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| |
Collapse
|
5
|
Damiri F, Fatimi A, Santos ACP, Varma RS, Berrada M. Smart stimuli-responsive polysaccharide nanohydrogels for drug delivery: a review. J Mater Chem B 2023; 11:10538-10565. [PMID: 37909361 DOI: 10.1039/d3tb01712e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Polysaccharides have found extensive utilization as biomaterials in drug delivery systems owing to their remarkable biocompatibility, simple functionalization, and inherent biological properties. Within the array of polysaccharide-based biomaterials, there is a growing fascination for self-assembled polysaccharide nanogels (NG) due to their ease of preparation and enhanced appeal across diverse biomedical appliances. Nanogel (or nanohydrogel), networks of nanoscale dimensions, are created by physically or chemically linking polymers together and have garnered immense interest as potential carriers for delivering drugs due to their favorable attributes. These include biocompatibility, high stability, the ability to adjust particle size, the capacity to load drugs, and their inherent potential to modify their surface to actively target specific cells or tissues via the attachment of ligands that can recognize corresponding receptors. Nanogels can be engineered to respond to specific stimuli, such as pH, temperature, light, or redox conditions, allowing controlled release of the encapsulated drugs. This intelligent targeting capability helps prevent drug accumulation in unintended tissues and reduces the potential side effects. Herein, an overview of nanogels is offered, comprising their methods of preparation and the design of stimulus-responsive nanogels that enable controlled release of drugs in response to specific stimuli.
Collapse
Affiliation(s)
- Fouad Damiri
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco.
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco.
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco.
| | - Ana Cláudia Paiva Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos - SP, Brazil.
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco.
| |
Collapse
|
6
|
Zarenezhad E, Sanei-Dehkordi A, Babaalizadeh B, Qasmei H, Osanloo M. Repellent efficacy of the nanogel containing Acroptilon repens essential oil in comparison with DEET against Anopheles stephensi. BMC Res Notes 2023; 16:261. [PMID: 37814316 PMCID: PMC10561488 DOI: 10.1186/s13104-023-06538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Malaria is a vector-borne disease that causes many deaths worldwide; repellents are a practical approach to malaria prevention, especially in endemic regions. RESULTS Gas chromatography-mass spectrometry analysis was used to identify compounds in Acroptilon repens essential oil (EO). Alpha-copaene (15.67%), α-cubenen (3.76%), caryophyllene oxide (14.00%), 1-heptadecane (5.61%), and δ-cadinene (2.84) were five major compounds. After that, the nanoemulsion containing the EO with a particle size of 46 ± 4 nm, SPAN 0.85, PDI 0.4, and zeta potential - 5.7 ± 0.4 mV was prepared. Then, it was gellified by adding CMC (carboxymethyl cellulose) to the nanoemulsion. Besides, ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) was used to confirm the EO's successful loading in the nanogel. Finally, the protection time and repellent activity of nanogel compared to DEET (N, N-diethyl-meta-toluamide) were investigated against Anopheles stephensi. Interestingly, the nanogel with a protection time of 310 ± 45 min was significantly more potent than DEET (160 ± 17 min). It could thus be considered for future investigation against other mosquitoes.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Sanei-Dehkordi
- Department of Biology and Control of Disease Vectors, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Babaalizadeh
- Department of Biochemistry, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hajar Qasmei
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
7
|
Lopes da Costa L, Moreau C, Lourdin D, Cathala B, Villares A. Unraveling the control of reversibility for actuators based on cellulose nanofibers. Carbohydr Polym 2023; 314:120951. [PMID: 37173018 DOI: 10.1016/j.carbpol.2023.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
In this work, we have prepared cellulose-based actuators taking advantage of the pH-sensitive solubility of chitosan (CH) and the mechanical strength of CNFs. Bilayer films were prepared by vacuum filtration inspired by plant structures that exhibit reversible deformation under pH changes. The presence of CH in one of the layers led to asymmetric swelling at low pH, thanks to the electrostatic repulsion between charged amino groups of CH, and the subsequent twisting with the CH layer on the outside. Reversibility was achieved by substituting pristine CNFs with carboxymethylated CNFs (CMCNFs), that are charged at high pH and thus competed with the effects of amino groups. Swelling and mechanical properties of layers under pH changes were studied by gravimetry and dynamic mechanical analysis (DMA) to quantify the contribution of chitosan and the modified CNFs on the reversibility control. This work evidenced the key role of surface charge and layer stiffness to achieve reversibility. Bending was triggered by the different water uptake of each layer, and shape recovery was achieved when the shrunk layer shower higher rigidity than the swollen layer.
Collapse
|
8
|
Yu C, Shan J, Ju H, Chen X, Xu G, Wu Y. Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability. Foods 2023; 12:2692. [PMID: 37509784 PMCID: PMC10379602 DOI: 10.3390/foods12142692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This work presents the fabrication of ternary nanoparticles (Z/S/C NPs) comprising zein (Z), soy protein isolate (SPI) and carboxymethylcellulose sodium (CMC-Na) through a pH-driven method. The results showed that the smallest particle size (71.41 nm) and the most stable zeta potential, measuring -49.97 mV, were achieved with the following ratio of ternary nanoparticles Z/SPI/CMC-Na (2:3:3). The surface morphology of the nanoparticles was further analyzed using transmission electron microscopy, and the synthesized nanoparticles were utilized to encapsulate curcumin (Cur), a hydrophobic, bioactive compound. The nanoparticles were characterized using a particle size analyzer, infrared spectroscopy, and X-ray diffraction (XRD) techniques. The results revealed that the formation of nanoparticles and the encapsulation of Cur were driven by electrostatic, hydrogen-bonding and hydrophobic interactions. The drug loading efficiency (EE%) of Z/S/C-cur nanoparticles reached 90.90%. The Z/S/C ternary nanoparticles demonstrated enhanced storage stability, photostability and simulated the gastrointestinal digestion of Cur. The release of Cur and variations in the particle size of nanoparticles were investigated across different stages of digestion. The biocompatibility of the Z/S/C ternary nanoparticles was assessed by conducting cell viability assays on HepG2 and L-O2 cells, which showed no signs of cytotoxicity. These results suggested that the ternary composite nanoparticles have potential in delivering nutritional foods and health-promoting bioactive substances.
Collapse
Affiliation(s)
- Chong Yu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jingyu Shan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Hao Ju
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xiao Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Guangsen Xu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yanchao Wu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
9
|
Azadi S, Osanloo M, Zarenezhad E, Farjam M, Jalali A, Ghanbariasad A. Nano-scaled emulsion and nanogel containing Mentha pulegium essential oil: cytotoxicity on human melanoma cells and effects on apoptosis regulator genes. BMC Complement Med Ther 2023; 23:6. [PMID: 36624422 PMCID: PMC9830879 DOI: 10.1186/s12906-023-03834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Topical drug delivery using nanoemulsions and nanogels is a promising approach to treating skin disorders such as melanoma. METHODS In this study, the chemical composition of Mentha pulegium essential oil with five major compounds, including pulegone (68.11%), l-menthone (8.83%), limonene (2.90%), iso-pulegone (2.69%), and iso-menthone (1.48%) was first identified using GC-MS (Gas chromatography-Mass Spectrometry) analysis. Afterward, a nano-scaled emulsion containing the essential oil with a droplet size of 7.70 ± 1 nm was prepared. Nanogel containing the essential oil was then prepared by adding (2% w/v) carboxymethyl cellulose to the nano-scaled emulsion. Moreover, the successful loading of M. pulegium essential oil in the nano-scaled emulsion and nanogel was confirmed using ATR-FTIR (Attenuated total reflectance-Fourier Transform InfraRed) analysis. Then, human A375 melanoma cells were treated with different concentrations of samples, the MTT assay evaluated cell viability, and cell apoptosis was confirmed by flow cytometry. In addition, the expression of apoptotic and anti-apoptotic genes, including Bax and Bcl-2, was evaluated using the qPCR (quantitative Polymerase Chain Reaction) technique. RESULTS The results showed that cell viability was reduced by 90 and 45% after treatment with 300 μg/mL of the nanogel and nano-scaled emulsion. As confirmed by flow cytometry, this effect was mediated by apoptosis. Furthermore, gene expression analysis showed up-regulation of Bax and down-regulation of Bcl-2 genes. Therefore, the prepared nanogel, with high efficacy, could be considered a potent anticancer agent for supplementary medicine and in vivo research.
Collapse
Affiliation(s)
- Sareh Azadi
- grid.411135.30000 0004 0415 3047Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- grid.411135.30000 0004 0415 3047Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mojtaba Farjam
- grid.411135.30000 0004 0415 3047Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Akram Jalali
- grid.411950.80000 0004 0611 9280Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Ghanbariasad
- grid.411135.30000 0004 0415 3047Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
10
|
Zamanvaziri A, Meshkat M, Alazmani S, Khaleghi S, Hashemi M. Targeted PEGylated Chitosan Nano-complex for Delivery of Sodium Butyrate to Prostate Cancer: An In Vitro Study. Technol Cancer Res Treat 2023; 22:15330338231159223. [PMID: 36855824 PMCID: PMC9983112 DOI: 10.1177/15330338231159223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Introduction: Cancer remains a challenging issue against human health throughout the world; As a result, introducing novel approaches would be beneficial for cancer treatment. In this research, sodium butyrate (Sb) is one of the effective anti-cancer therapeutics (also a potent survival factor for normal cells) that was used for prostate cancer suppression in the platform of modified chitosan (CS) nano-complex (polyethylene glycol (PEG)-folic acid (FA)-Sb-CS). Methods: Different analytical devices including Fourier transform infrared, dynamic light scattering, high-performance liquid chromatography, scanning electron microscopy, and transmission electron microscopy were applied for the characterization of synthetics. On the other hand, biomedical tests including cell viability assay, molecular and functional assay of apoptosis/autophagy pathways, and cell cycle arrest analysis were potentially implemented on human PC3 (folate receptor-negative prostate cancer) and DU145 (folate receptor-positive prostate cancer) and HFF-1 normal cell lines. Results: The quality of the syntheses was effectively verified, and the size range from 140 to 170 nm was determined for the PEG-CS-FA-Sb sample. Also, 75 ± 5% of drug entrapment efficiency with controlled drug release manner (Sb release of 54.21% and 74.04% for pHs 7.4 and 5.0) were determined for nano-complex. Based on MTT results, PEG-CS-FA-Sb has indicated 72.07% and 33.53% cell viability after 24 h of treatment with 9 mM on PC3 and DU145 cell lines, respectively, which is desirable anti-cancer performance. The apoptotic and autophagy genes overexpression was 15-fold (caspase9), 2.5-fold (BAX), 11-fold (ATG5), 2-fold (BECLIN1), and 3-fold (mTORC1) genes in DU145 cancer cells. More than 50% of cell cycle arrest and 45.05% of apoptosis were obtained for DU145 cancer cells after treatment with nano-complex. Conclusion: Hence, the synthesized Sb-loaded nano-complex could specifically suppress prostate cancer cell growth and induce apoptosis and autophagy in the molecular and cellular phases.
Collapse
Affiliation(s)
- Ali Zamanvaziri
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Science, 68106Islamic Azad University, Tehran, Iran
| | - Mahboobeh Meshkat
- Department of Biology, Division of Cellular and Molecular Biology, Nourdanesh University of Meymeh, Meymeh, Isfahan, Iran
| | - Soroush Alazmani
- Student research committee, School of Medicine, 440827Iran University of Medical Science, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, 68106Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Science, 68106Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, 68106Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Liu L, Ode Boni BO, Ullah MW, Qi F, Li X, Shi Z, Yang G. Cellulose: A promising and versatile Pickering emulsifier for healthy foods. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2142940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Li Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Biaou Oscar Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Halophilic and Halotolerant Actinomycetes of Sambhar Salt Lake, India: Screening and Optimization of Cellulolytic Activity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinomycetes are Gram-positive filamentous bacteria well known for the production of bioactive compounds. Recently, many halophilic habitats have been explored for isolation of actinomycetes that exhibit biotechnological potentials. In this investigation, a saline habitat of Rajasthan, Sambhar Salt Lake (SSL) was selected to study the actinomycetes population and Carboxy Methyl Cellulase (CMCase) production by native isolates. A total of sixteen actinomycete isolates, halotolerant and moderately halophilic, were obtained using culture-dependent methods and characterized morphologically and biochemically. They were identified as members of Streptomyces, Nocardiopsis, Pseudonocardia, Saccharospolyspora, and Microbispora. Streptomyces was the most dominating genus, followed by Nocardiopsis. Agar plate assay was used for screening the isolates for CMCase production. Thirteen were found to produce the enzyme, apparent by hydrolysis observed on media plates. The highest relative activity of 22.04 was shown by isolate SSL 14 identified as Nocardiopsis sp. by 16S rDNA sequencing studies and thus selected for further optimization studies. Maximum enzyme (1.08 ± 0.09 U/ml) was produced using medium containing Carboxy Methyl Cellulose (Carbon source) and yeast extract (nitrogen source) at 12% NaCl and pH 9.0, incubated at 30 °C for 96 h. Maximum CMCase production at high salt concentration and pH suggests that Nocardiopsis SSL 14 can be used for industrial processes that operate under excessive saline and alkaline conditions.
Collapse
|
13
|
Wang W, Yu C, Zhang F, Li Y, Zhang B, Huang J, Zhang Z, Jin L. Improved oral delivery of insulin by PLGA nanoparticles coated with 5 β-cholanic acid conjugated glycol chitosan. Biomed Mater 2021; 16. [PMID: 34571498 DOI: 10.1088/1748-605x/ac2a8c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Oral insulin has been regarded as the best alternative to insulin injection in therapy of diabetes because of its convenience and painlessness. However, several obstacles in the gastrointestinal tract, such as gastric acid and enzyme, greatly reduce the bioavailability of oral insulin. Herein, we report design and preparation of poly (d, l-lactic-co-glycolic acid) nanoparticles (PLGA NPs) coated with 5β-cholanic acid modified glycol chitosan (GC-CA) (GC-CA@PLGA NPs) to improve the oral delivery of insulin. The GC-CA@PLGA NPs with the size of (302.73 ± 5.13 nm) and zeta potential of (25.03 ± 0.31 mV) were synthesized using the double-emulsion method. The insulin-loading capacity and encapsulation efficiency were determined to be 5.77 ± 0.58% and 51.99 ± 5.27%, respectively. Compared with GC-modified PLGA NPs (GC@PLGA NPs) and bare PLGA NPs, the GC-CA@PLGA NPs showed excellent stability and uptake by Caco-2 cells after simulated gastric acid digestion. Further experiment suggests good biocompatibility of GC-CA@PLGA NPs, including hemolysis and cytotoxicity. Inin vivoexperiment, the insulin loaded in the GC-CA@PLGA NPs exhibited a long-term and stable release profile for lowering blood glucose and presented 30.43% bioavailability in oral administration. In brief, we have developed an efficient and safe drug delivery system, GC-CA@PLGA NPs, for significantly improved oral administration of insulin, which may find potential application in the treatment of diabetes.
Collapse
Affiliation(s)
- Weizhi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drugability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drugability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yuxuan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Bo Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drugability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, People's Republic of China
| |
Collapse
|
14
|
Li L, Zhang P, Li C, Guo Y, Sun K. In vitro/vivo antitumor study of modified-chitosan/carboxymethyl chitosan "boosted" charge-reversal nanoformulation. Carbohydr Polym 2021; 269:118268. [PMID: 34294300 DOI: 10.1016/j.carbpol.2021.118268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Major obstacles in the development of nanoformulations as efficient drug delivery systems are the rapid clearance from blood circulation and lysosomal entrapment. To overcome these problems, a polysaccharide-based core-shell type charge-switchable nanoformulation (CS-LA-DMMA/CMCS/PAMAM@DOX) is constructed to improve antitumor efficacy of DOX. By applying carboxymethyl chitosan (CMCS) as bridge polymer and negatively charged chitosan-derivative as outer shell, the stability and pH-sensitivity of this nanoformulation is promisingly enhanced. Furthermore, the positively charged PAMAM@DOX could escape from lysosomes via "proton sponge effect" and "cationic-anionic interaction with lysosome membranes". Admirable cellular uptake and high apoptosis/necrosis rate were detected in this study. In vitro assays demonstrate that the CS-LA-DMMA/CMCS/PAMAM@DOX was internalized into HepG2 cells predominantly via the clathrin-mediated endocytosis pathway. Excitingly, in vivo studies showed that high accumulation of CS-LA-DMMA/CMCS/PAMAM@DOX in tumor tissue led to enhanced tumor inhibition. Compared with free DOX, the tumor inhibition rate of nanoformulation was improved up to 226%.
Collapse
Affiliation(s)
- Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Congcong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yan Guo
- Department of Development Planning & Discipline Construction, Yantai University, Yantai 264005, PR China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai 264003, PR China.
| |
Collapse
|
15
|
Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, Shiddiky MJA, Ahmed MB. Recent Developments of Carboxymethyl Cellulose. Polymers (Basel) 2021; 13:1345. [PMID: 33924089 PMCID: PMC8074295 DOI: 10.3390/polym13081345] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
Carboxymethyl cellulose (CMC) is one of the most promising cellulose derivatives. Due to its characteristic surface properties, mechanical strength, tunable hydrophilicity, viscous properties, availability and abundance of raw materials, low-cost synthesis process, and likewise many contrasting aspects, it is now widely used in various advanced application fields, for example, food, paper, textile, and pharmaceutical industries, biomedical engineering, wastewater treatment, energy production, and storage energy production, and storage and so on. Many research articles have been reported on CMC, depending on their sources and application fields. Thus, a comprehensive and well-organized review is in great demand that can provide an up-to-date and in-depth review on CMC. Herein, this review aims to provide compact information of the synthesis to the advanced applications of this material in various fields. Finally, this article covers the insights of future CMC research that could guide researchers working in this prominent field.
Collapse
Affiliation(s)
- Md. Saifur Rahman
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md. Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Ashis Sutradhar Nitai
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Sunghyun Nam
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA;
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Md. Shameem Ahsan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Muhammad J. A. Shiddiky
- School of Environment and Science (ESC) and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan 4111, Australia;
| | - Mohammad Boshir Ahmed
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
16
|
Yuan Y, Li H, Leite W, Zhang Q, Bonnesen PV, Labbé JL, Weiss KL, Pingali SV, Hong K, Urban VS, Salmon S, O'Neill H. Biosynthesis and characterization of deuterated chitosan in filamentous fungus and yeast. Carbohydr Polym 2021; 257:117637. [PMID: 33541662 DOI: 10.1016/j.carbpol.2021.117637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/29/2020] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
Deuterated chitosan was produced from the filamentous fungus Rhizopus oryzae, cultivated with deuterated glucose in H2O medium, without the need for conventional chemical deacetylation. After extraction and purification, the chemical composition and structure were determined by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS). 13C NMR experiments provided additional information about the position of the deuterons in the glucoseamine backbone. The NMR spectra indicated that the deuterium incorporation at the non-exchangeable hydrogen positions of the aminoglucopyranosyl ring in the C3 - C5 positions was at least 60-80 %. However, the C2 position was deuterated at a much lower level (6%). Also, SANS showed that the structure of deuterated chitosan was very similar compared to the non-deuterated counterpart. The most abundant radii of the protiated and deuterated chitosan fibers were 54 Å and 60 Å, respectively, but there is a broader distribution of fiber radii in the protiated chitosan sample. The highly deuterated, soluble fungal chitosan described here can be used as a model material for studying chitosan-enzyme complexes for future neutron scattering studies. Because the physical behavior of non-deuterated fungal chitosan mimicked that of shrimp shell chitosan, the methods presented here represent a new approach to producing a high quality deuterated non-animal-derived aminopolysaccharide for studying the structure-function association of biocomposite materials in drug delivery, tissue engineering and other bioactive chitosan-based composites.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hui Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington Leite
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Qiu Zhang
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Peter V Bonnesen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jessy L Labbé
- Fungal Systems Genetics and Biology Lab, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kevin L Weiss
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sai Venkatesh Pingali
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Volker S Urban
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sonja Salmon
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Hugh O'Neill
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
17
|
Chen W, Cheng H, Jiang Q, Xia W. The characterization and biological activities of synthetic N, O-selenized chitosan derivatives. Int J Biol Macromol 2021; 173:504-512. [PMID: 33460653 DOI: 10.1016/j.ijbiomac.2021.01.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/14/2023]
Abstract
Synthetic selenium polysaccharides with potential bioactivity have drawn great interest due to the SeO bonds existing in the structure. Herein, N, O-selenized N-(2-carboxyethyl) chitosan (sNCCS) was synthesized through carboxyethylation and selenylation. Various characterizations were performed to identify the structure of sNCCS, indicating that SeO bonds were formed both at the C-6 hydroxyl groups and the introduced C-2 carboxyethyl groups. The highest yield and selenium content of all sNCCS reached 84.5% and 1.553 mg/g, respectively. In vitro evaluation exhibited that sNCCS has excellent bile acid binding capacity, which was 1.63, 2.00, and 2.55-fold higher than that of N-(2-carboxyethyl) chitosan (NCCS). Moreover, it was found that higher selenium content could significantly enhance the antioxidant properties of sNCCS. Importantly, no obvious cytotoxic effect had been observed on Caco-2 cells. Taken together, sNCCS with desirable biological activity and non-cytotoxicity might be considered as an effective ingredient in the fields of food or medicine.
Collapse
Affiliation(s)
- Wanwen Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qixing Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wenshui Xia
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
18
|
Klunklin W, Jantanasakulwong K, Phimolsiripol Y, Leksawasdi N, Seesuriyachan P, Chaiyaso T, Insomphun C, Phongthai S, Jantrawut P, Sommano SR, Punyodom W, Reungsang A, Ngo TMP, Rachtanapun P. Synthesis, Characterization, and Application of Carboxymethyl Cellulose from Asparagus Stalk End. Polymers (Basel) 2020; 13:polym13010081. [PMID: 33379203 PMCID: PMC7795991 DOI: 10.3390/polym13010081] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Cellulose from Asparagus officinalis stalk end was extracted and synthesized to carboxymethyl cellulose (CMCas) using monochloroacetic acid (MCA) via carboxymethylation reaction with various sodium hydroxide (NaOH) concentrations starting from 20% to 60%. The cellulose and CMCas were characterized by the physical properties, Fourier Transform Infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). In addition, mechanical properties of CMCas films were also investigated. The optimum condition for producing CMCas was found to be 30% of NaOH concentration for the carboxymethylation reaction, which provided the highest percent yield of CMCas at 44.04% with the highest degree of substitution (DS) at 0.98. The melting point of CMCas decreased with increasing NaOH concentrations. Crystallinity of CMCas was significantly deformed (p < 0.05) after synthesis at a high concentration. The L* value of the CMCas was significantly lower at a high NaOH concentration compared to the cellulose. The highest tensile strength (44.59 MPa) was found in CMCas film synthesized with 40% of NaOH concentration and the highest percent elongation at break (24.99%) was obtained in CMCas film treated with 30% of NaOH concentration. The applications of asparagus stalk end are as biomaterials in drug delivery system, tissue engineering, coating, and food packaging.
Collapse
Affiliation(s)
- Warinporn Klunklin
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
| | - Yuthana Phimolsiripol
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
| | - Noppol Leksawasdi
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chayatip Insomphun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Suphat Phongthai
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pensak Jantrawut
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarana Rose Sommano
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Group for Development of Microbial Hydrogen Production Process, Khon Kaen University, Khon Kaen 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Thi Minh Phuong Ngo
- Department of Chemical Technology and Environment, The University of Danang—University of Technology and Education, Danang 550000, Vietnam;
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
- Correspondence:
| |
Collapse
|