1
|
He X, Chen F, Lu C, Wang S, Mao G, Jin W, Zhong W. Comparison of anti-tumor activities and underlying mechanisms of glucuronomannan oligosaccharides and its sulfated derivatives on the hepatocarcinoma Huh7.5 cells. Biochem Biophys Res Commun 2023; 652:103-111. [PMID: 36841097 DOI: 10.1016/j.bbrc.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor triggered by various factors such as virus infection and alcohol abuse. Glucuronomannan polysaccharide (Gx) is a subtype of fucoidans that possesses many bioactivities, but its anti-tumor activities in HCC have not been reported. In this paper, the anti-tumor effects of glucuronomannan oligosaccharides (Gx) and its sulfated derivatives (GxSy) on hepatocarcinoma Huh7.5 cells were investigated. The anti-proliferation, anti-metastasis activities, and underlying mechanism of Gx and GxSy on Huh7.5 cells were analyzed and compared by MTT, wound healing, transwell, and western blotting assays, respectively. Results showed that the best anti-proliferation effects were G4S1 and G4S2 among 13 drugs, which were 38.67% and 30.14%, respectively. The cell migration rates were significantly inhibited by G2S1, G4S2, G6S2, and unsulfated Gn. In addition, cell invasion effects treated with G4S1, G4S2, and G6S1 decreased to 48.62%, 36.26%, and 42.86%, respectively. Furthermore, sulfated G4 regulated the expression of (p-) FAK and MAPK pathway, and sulfated G6 down-regulated the MAPK signaling pathway while activating the PI3K/AKT pathway. On the contrary, sulfated G2 and unsulfated Gx had no inhibited effects on the FAK-mTOR pathway. These results indicated that sulfated Gx derivatives have better anti-tumor activities than unsulfated Gx in cell proliferation and metastasis process in vitro, and those properties depend on the sulfation group levels. Moreover, degrees of polymerization of Gx also played a vital role in mechanisms and bioactivities. This finding shows the structure-activity relationship for developing and applying the marine oligosaccharide candidates.
Collapse
Affiliation(s)
- Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fen Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenghui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Sulfated fuco-manno-glucuronogalactan alleviates pancreatic beta cell senescence via PI3K/AKT/FoxO1 pathway. Int J Biol Macromol 2023; 236:123846. [PMID: 36863675 DOI: 10.1016/j.ijbiomac.2023.123846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Appearance of senescent beta cells in the pancreas leads to the onset of type 2 diabetes (T2D). The structural analysis of a sulfated fuco-manno-glucuronogalactan (SFGG) indicated SFGG had the backbones of interspersing 1, 3-linked β-D-GlcpA residues, 1, 4-linked α-D-Galp residues, and alternating 1, 2-linked α-D-Manp residues and 1, 4-linked β-D-GlcpA residues, sulfated at C6 of Man residues, C2/C3/C4 of Fuc residues and C3/C6 of Gal residues, and branched at C3 of Man residues. SFGG effectively alleviated senescence-related phenotypes in vitro and in vivo, including cell cycle, senescence-associated β-galactosidase, DNA damage and senescence-associated secretory phenotype (SASP) -associated cytokines and hall markers of senescence. SFGG also alleviated beta cell dysfunction in insulin synthesis and glucose-stimulated insulin secretion. Mechanistically, SFGG attenuated senescence and improved beta cell function via PI3K/AKT/FoxO1 signaling pathway. Therefore, SFGG could be used for beta cell senescence treatment and alleviation of the progression of T2D.
Collapse
|
3
|
Jin W, Chen F, Fang Q, Mao G, Bao Y. Oligosaccharides from Sargassum thunbergii inhibit osteoclast differentiation via regulation of IRF-8 signaling. Exp Gerontol 2023; 172:112057. [PMID: 36513214 DOI: 10.1016/j.exger.2022.112057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is a systemic bone degenerative disease characterized by low bone mass and deteriorated microarchitecture of bone tissue, causing high morbidity and mortality rates. Bone resorption by overactivated osteoclasts (OCs) is the main cause of osteoporosis. Glucuronomannan and its oligomers (Gs) and their sulfated derivatives (SGs) were previously prepared. The anti-osteoporosis activities of these glycans were evaluated. Firstly, we determined the viability of RAW264.7 by CCK-8 test. Nextly, we investigated the inhibitory effects of Gs and SGs on the differentiation of RAW264.7 cells into OCs using tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring staining, qualitative reverse-transcription polymerase chain reaction(qRT-PCR) and western blotting. TRAP staining revealed that Gs significantly blocked RANKL-induced OC generation while SGs did not exhibit this ability. F-actin staining assays demonstrated that Gs inhibits RANKL-induced actin ring formation. qRT-PCR analyses indicated that Gs dose-dependently inhibited the expression of OCs marker genes including Trap, NFATc1, c-Fos, DC-Stamp and ATP60 during the differentiation process, while SGs did not suppress. Regarding the mechanism of Gs, it was found that Gs suppressed osteoclastogenesis via inhibiting the degradation of IRF-8 and interfering with NF-κB pathway activation. Together, these results suggest that Gs have the ability to inhibit osteoclastogenesis by modulating IRF-8 signaling.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China..
| | - Fen Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, PR China.
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, PR China.
| |
Collapse
|
4
|
Jin W, Lu C, Zhu Y, Zhao J, Zhang W, Wang L, Linhardt RJ, Wang C, Zhang F. Fucoidans inhibited tau interaction and cellular uptake. Carbohydr Polym 2023; 299:120176. [PMID: 36876791 PMCID: PMC10506861 DOI: 10.1016/j.carbpol.2022.120176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
Abstract
Tau spreading in Alzheimer's disease is mediated by cell surface heparan sulfate (HS). As a class of sulfated polysaccharides, fucoidans might compete with HS to bind tau, resulting in the cessation of tau spreading. The structural determinants of fucoidans for competition with HS binding to tau are not well understood. Sixty previously prepared fucoidans/glycans with different structural determinants were used to determine their binding abilities to tau using SPR and AlphaLISA. Finally, it was found that fucoidans had two fractions (sulfated galactofucan (SJ-I) and sulfated heteropolysaccharide (SJ-GX-3)), which exhibited strong binding abilities than heparin. Tau cellular uptake assays using wild type mouse lung endothelial cell lines were performed. It was shown SJ-I and SJ-GX-3 inhibited tau-cell interaction and tau cellular uptake, suggesting that fucoidans might be good candidates for inhibiting tau spreading. NMR titration mapped fucoidans binding sites, which could provide the theoretical basis for the design of tau spreading inhibitors.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Chenghui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanan Zhu
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Jing Zhao
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenjing Zhang
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Chunyu Wang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
5
|
Insight into the relationships of structure and anti-tumor effects of Glucuronomannan oligosaccharides (Gx) and its derivatives on the A549 lung adenocarcinoma cells. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Zhang W, Jin W, Pomin VH, Zhang F, Linhardt RJ. Interactions of marine sulfated glycans with antithrombin and platelet factor 4. Front Mol Biosci 2022; 9:954752. [PMID: 36200072 PMCID: PMC9527323 DOI: 10.3389/fmolb.2022.954752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 01/28/2023] Open
Abstract
The molecular interactions of sulfated glycans, such as heparin, with antithrombin (AT) and platelet factor 4 (PF4) are essential for certain biological events such as anticoagulation and heparin induced thrombocytopenia (HIT). In this study, a library including 84 sulfated glycans (polymers and oligomers) extracted from marine algae along with several animal-originated polysaccharides were subjected to a structure-activity relationship (SAR) study regarding their specific molecular interactions with AT and PF4 using surface plasmon resonance. In this SAR study, multiple characteristics were considered including different algal species, different methods of extraction, molecular weight, monosaccharide composition, sulfate content and pattern and branching vs. linear chains. These factors were found to influence the binding affinity of the studied glycans with AT. Many polysaccharides showed stronger binding than the low molecular weight heparin (e.g., enoxaparin). Fourteen polysaccharides with strong AT-binding affinities were selected to further investigate their binding affinity with PF4. Eleven of these polysaccharides showed strong binding to PF4. It was observed that the types of monosaccharides, molecular weight and branching are not very essential particularly when these polysaccharides are oversulfated. The sulfation levels and sulfation patterns are, on the other hand, the primary contribution to strong AT and PF4 interaction.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihua Jin
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China,*Correspondence: Weihua Jin, ; Fuming Zhang, ; Robert J. Linhardt,
| | - Vitor H. Pomin
- Department of BioMolecular Sciences, The University of Mississippi, Oxford, MS, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States,*Correspondence: Weihua Jin, ; Fuming Zhang, ; Robert J. Linhardt,
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States,Departments of Biological Science, Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States,*Correspondence: Weihua Jin, ; Fuming Zhang, ; Robert J. Linhardt,
| |
Collapse
|
7
|
Wang S, Xu X, Sun C, Zhang J, He X, Zhang Z, Huang H, Yan J, Jin W, Mao G. Sulphated glucuronomannan tetramer and hexamer from Sargassum thunbergii exhibit anti-human cytomegalovirus activity by blocking viral entry. Carbohydr Polym 2021; 273:118510. [PMID: 34560939 DOI: 10.1016/j.carbpol.2021.118510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
Human cytomegalovirus (HCMV) remains a major public health burden worldwide. The anti-HCMV activity of glucuronomannan oligosaccharides (Gs) and sulphated glucuronomannan oligosaccharides (SGs) was investigated. Among these Gs and SGs, G4S1 and G6S1 (higher sulphated glucuronomannan tetramer and hexamer) showed satisfactory anti-HCMV activity starting at 50 μg/mL and 10 μg/mL, respectively. The results of the morphology, western blotting, qPCR and TCID50 assay showed that they prevented lytic cytopathic changes, inhibited the expression of IE1/2 and UL44, and reduced the UL123 copy number and virus titre significantly. It was interesting to note that degree of sulphation and polymerization was more important for anti-HCMV activity. Moreover, the anti-HCMV activities of G4S1 and G6S1 were stable when stored at 4 °C, -20 °C, and -80 °C for at least three months and mainly occurred in the early stage of HCMV infection through the negative charge of the sulphate groups and the interaction between SGs and the host cells.
Collapse
Affiliation(s)
- Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, PR China
| | - Hong Huang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Jing Yan
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| |
Collapse
|
8
|
Jin W, Zhang W, Mitra D, McCandless MG, Sharma P, Tandon R, Zhang F, Linhardt RJ. The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. Int J Biol Macromol 2020; 163:1649-1658. [PMID: 32979436 PMCID: PMC7513770 DOI: 10.1016/j.ijbiomac.2020.09.184] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022]
Abstract
The SARS-CoV-2 spike glycoproteins (SGPs) and human angiotensin converting enzyme 2 (ACE2) are the two key targets for the prevention and treatment of COVID-19. Host cell surface heparan sulfate (HS) is believed to interact with SARS-CoV-2 SGPs to facilitate host cell entry. In the current study, a series of polysaccharides from Saccharina japonica were prepared to investigate the structure-activity relationship on the binding abilities of polysaccharides (oligosaccharides) to pseudotype particles, including SARS-CoV-2 SGPs, and ACE2 using surface plasmon resonance. Sulfated galactofucan (SJ-D-S-H) and glucuronomannan (Gn) displayed strongly inhibited interaction between SARS-CoV-2 SGPs and heparin while showing negligible inhibition of the interaction between SARS-CoV-2 SGPs and ACE2. The IC50 values of SJ-D-S-H and Gn in blocking heparin SGP binding were 27 and 231 nM, respectively. NMR analysis showed that the structure of SJ-D-S-H featured with a backbone of 1, 3-linked α-L-Fucp residues sulfated at C4 and C2/C4 and 1, 3-linked α-L-Fucp residues sulfated at C4 and branched with 1, 6-linked β-D-galacto-biose; Gn had a backbone of alternating 1, 4-linked β-D-GlcAp residues and 1, 2-linked α-D-Manp residues. The sulfated galactofucan and glucuronomannan showed strong binding ability to SARS-CoV-2 SGPs, suggesting that these polysaccharides might be good candidates for preventing and/or treating SARS-CoV-2.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Dipanwita Mitra
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Martin G McCandless
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Poonam Sharma
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Departments of Biological Science, Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|