1
|
Niyazi A, Mu C, Wang T, Ye W, Zhong L, He Z, Xu H, Zhang Z, Zhang L. Study on the selective adsorption of Ag + by thermosensitive poly(n-isopropylacrylamide)/guanylthiourea/chitosan composites. Int J Biol Macromol 2025; 294:139182. [PMID: 39746415 DOI: 10.1016/j.ijbiomac.2024.139182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
In this work, temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) and the guanylthiourea (GLA) were used to modify chitosan (CS) to prepare a novel PNIPAM/GLA/CS adsorbent for Ag(I) ions. Temperature variations near the lower critical solution temperature (LCST) facilitate the adjustment of functional group distribution within the composite material, thereby influencing its adsorption performance for silver ions. The characteristics of this composite material were confirmed using a variety of techniques, including scanning electron microscopy (SEM), variable-temperature ultraviolet-visible near-infrared spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Studies on the adsorption of Ag(I) ions by the PNIPAM/GLA/CS adsorbent indicated that the optimal pH for adsorption is 6.0. The adsorption kinetics were best described by the pseudo-second order kinetic model, while the equilibrium adsorption data aligned more closely with the Langmuir adsorption isotherm model, achieving a maximum adsorption capacity of 336.33 mg/g at 40°C. Experimental results demonstrated that higher adsorption amounts were observed above the LCST, while desorption of target ions was more favorable below the LCST. This research provides valuable insights for the design of new structural adsorbents.
Collapse
Affiliation(s)
- Aili Niyazi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Wangsheng Ye
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Lvling Zhong
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Zhixian He
- Instrumental Analysis Center, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Haoyang Xu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Zhiqiang Zhang
- Department of Material and Chemical engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Liang Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| |
Collapse
|
2
|
Verma A, Sharma G, Wang T, Kumar A, Dhiman P, Verma Y, Bhaskaralingam A, García-Penas A. Graphene oxide/chitosan hydrogels for removal of antibiotics. ENVIRONMENTAL TECHNOLOGY 2025:1-31. [PMID: 39985820 DOI: 10.1080/09593330.2025.2464267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Antibiotic contamination in aquatic environments is a growing concern, posing risks to public health and ecosystems. To address this issue, advanced materials like graphene oxide (GO) and chitosan-based hydrogels are being extensively explored for their ability to effectively remove antibiotics from wastewater, owing to their distinct characteristics and synergistic benefits. This review comprehensively examines the synthesis, characterization, and applications of GO/chitosan hydrogels in addressing antibiotic pollution. The synthesis methods, including solution casting, crosslinking, and in situ polymerization, are discussed for their simplicity and scalability. The hydrogels' key properties, such as porosity, surface area, and mechanical strength, are essential for their efficient adsorption capabilities. Adsorption mechanisms, including electrostatic interactions, π-π stacking, hydrogen bonding, and surface functional groups, enable these hydrogels to achieve high adsorption capacities. Notable examples include rGO@ZIF-67@CS hydrogels, which achieved higher adsorption capacities of 1685.26 mg·g-1 for tetracycline at pH 4 and 1890.32 mg·g-1 for norfloxacin at pH 5, while the sulfonated CMC/GO-GCC composite hydrogel achieved 312.28 mg·g-1 for sulfamethoxazole at 298 K. Moreover, high adsorption efficiencies of 90.42% with GO-CTS and 97.06% were achieved using AGO-CTS hydrogel for diclofenac adsorption. The review also highlights the practical applications of these hydrogels in wastewater treatment, comparing their performance with other adsorbents and addressing challenges such as scalability and regeneration. Finally, the review explores future research directions to enhance the effectiveness and sustainability of GO/chitosan hydrogels, emphasizing their potential as scalable, eco-friendly solutions for antibiotic removal from water.
Collapse
Affiliation(s)
- Akshay Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Tongtong Wang
- Institute for Interdisciplinary and Innovate Research, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Yaksha Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aishwarya Bhaskaralingam
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Alberto García-Penas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, Legan'es, Spain
| |
Collapse
|
3
|
Al-salem AS, Nayl AA, Alshammari MS, M Ahmed I. Adsorption Study of Neodymium from the Aqueous Phase Using Fabricated Magnetic Chitosan-Functionalized Graphene Oxide Composites. ACS OMEGA 2024; 9:32175-32184. [PMID: 39072114 PMCID: PMC11270553 DOI: 10.1021/acsomega.4c04742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
This work reports the performances of the magnetic chitosan@graphene oxide composite (MCh@GO) for the sorption of Nd(III) from aqueous medium. The prepared composite was synthesized by a coprecipitation method and then examined by FT-IR, XRD, SEM, and TGA. XRD analysis proved physical interactions between magnetic chitosan and graphene oxide through (inter- and intramolecular H-bonding and peptide bonding). TGA data approved the thermal stability of the prepared MCh@GO nanocomposite over their constituents. The optimum pH for the sorption process was 4.5. The Langmuir model and PSO fitted the experimental data. The adsorption process was found to be endothermic and spontaneous with a Q max of 56.6 mg g-1. Indeed, the MCh@GO composite proved to be an excellent adsorbent for the purification, remediation, and separation of Nd due to its promising properties.
Collapse
Affiliation(s)
- Asmaa S. Al-salem
- Department
of Nursing, Northern College of Nursing, Arar 73311, Saudi Arabia
| | - AbdEIAziz A. Nayl
- Department
of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mutairah S. Alshammari
- Department
of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ismail M Ahmed
- Department
of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| |
Collapse
|
4
|
Rashda, Liu Y, Gao H, Li Z, Han R. Magnetic bio-composite based on zirconium and chitosan modified activated carbon from peanut husk with enhanced antibacterial and adsorptive potential for alizarin red and congo red in wastewater. Int J Biol Macromol 2024; 273:132995. [PMID: 38862056 DOI: 10.1016/j.ijbiomac.2024.132995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Creating new adsorbents is crucial for removing contaminants from water due to increased industrialization, which has worsened water pollution in recent years. In this study, a magnetic biocomposite, Zirconium (Zr)-doped chitosan (CS)-coated iron oxide nanoparticles (Fe3O4-NPs)-peanut husk (PH)-based activated carbon (AC) (Zr-CS/Fe3O4-NPs@PH-AC), was synthesized for efficient removal of alizarin red (AR) and congo red (CR) dyes, alongside antibacterial applications. Characterization via scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis revealed micropores and mesopores development due to chemical activation of PH biomaterial and Fe3O4-NPs addition. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) identified functional groups and structural properties. Vibrating sample magnetometry (VSM) analyzed magnetic properties. Optimal conditions for AR/CR removal were determined, including Zr-CS/Fe3O4-NPs@PH-AC dose, dye dose, contact time, and temperature, achieving maximum removal percentages. Experimentally determined maximum adsorption capacities for AR and CR were 374.3 and 154.1 mg·g-1, respectively. Cytotoxicity studies affirmed the eco-friendly and non-toxic nature of the adsorbent by exhibiting the reduction in the cell viability from 100 % to 88.68 % from the 0 to 200 μg·L-1 respectively. Additionally, the biocomposite exhibited significant antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) due to magnetic NPs. The material in this study shows extreme compatibility for numerous applications.
Collapse
Affiliation(s)
- Rashda
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China
| | - Yang Liu
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China
| | - Huihui Gao
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China
| | - Zhaohui Li
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| | - Runping Han
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| |
Collapse
|
5
|
Ahmed MA, Mohamed AA. The use of chitosan-based composites for environmental remediation: A review. Int J Biol Macromol 2023; 242:124787. [PMID: 37201888 DOI: 10.1016/j.ijbiomac.2023.124787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
The presence of hazardous pollutants in water sources as a result of industrial activities is a major environmental challenge that impedes the availability of safe drinking water. Adsorptive and photocatalytic degradative removal of various pollutants in wastewater have been recognized as cost-effective and energy-efficient strategies. In addition to its biological activity, chitosan and its derivatives are considered as promising materials for the removal of various pollutants. The abundance of hydroxyl and amino groups in the chitosan macromolecular structure results in a variety of concurrent pollutant's adsorption mechanisms. Furthermore, adding chitosan to photocatalysts increases the mass transfer while decreasing both the band gap energy and the amount of intermediates produced during photocatalytic processes, improving the overall photocatalytic efficiency. Herein, we have reviewed the current design and preparation of chitosan and its composites, as well as their applications for the removal of various pollutants by adsorption and photocatalysis processes. Effects of operating variables such as the pH, catalyst mass, contact time, light wavelength, initial pollutant's concentration, and catalyst recyclability, are discussed. Various kinetic and isotherm models are presented to elucidate the rates, and mechanisms of pollutant's removal, onto chitosan-based composites, and several case studies are presented. Additionally, the antibacterial activity of chitosan-based composites has been discussed. This review aims to provide a comprehensive and up-to-date overview of the applications of chitosan-based composites in wastewater treatment and put forward new insights for the development of highly effective chitosan-based adsorbents and photocatalysts. Finally, the main challenges and future directions in the field are discussed.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
6
|
Zhang X, Liu Y, Qu L, Han R. Adsorption of 2,4-dichlorophenoxyacetic acid and glyphosate from water by Fe 3O 4-UiO-66-NH 2 obtained in a simple green way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60574-60589. [PMID: 37032407 DOI: 10.1007/s11356-023-26737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
In this study, a green adsorbent (Fe3O4-UiO-66-NH2) with the ability of addressing the issues of separation and recovery of UiO-66-NH2 is obtained using a simple co-precipitation method under environmentally benign conditions. Various characterization techniques are utilized for evaluating the properties of the developed adsorbent. The capability of Fe3O4-UiO-66-NH2 towards 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate (GP) from solution is explored. The results revealed that the magnetization process did not destroy the crystal structure of UiO-66-NH2, which ensured that Fe3O4-UiO-66-NH2 had good adsorption performance for 2,4-D and GP. The adsorption processes showed a wide pH application range, high salt tolerance, and regeneration performance as well as an excellent adsorption rate. Results from thermodynamic study showed that both processes were spontaneous and endothermic. The unit uptake ability of Fe3O4-UiO-66-NH2 for 2,4-D and GP reached up to 249 mg·g-1 and 183 mg·g-1 from Langmuir model at 303 K, respectively. When solid-liquid ratio was 2 g·L-1, Fe3O4-UiO-66-NH2 can reduce the content of 2,4-D or GP with the initial density of 100 mg·L-1 below the drinking water requirement limit. In addition, the reusability efficiency of Fe3O4-UiO-66-NH2 towards 2,4-D and GP was found to be 86% and 80% using 5 mmol·L-1 NaOH as eluent. Analysis of simulated water samples indicated that Fe3O4-UiO-66-NH2 could achieve the single or simultaneous removal of 2,4-D and GP from wastewater. Summarily, Fe3O4-UiO-66-NH2 as a green adsorbent can serve as an alternative for removing 2,4-D and GP from water body.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Yang Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
7
|
Teng D, Jin P, Guo W, Liu J, Wang W, Li P, Cao Y, Zhang L, Zhang Y. Recyclable Magnetic Iron Immobilized onto Chitosan with Bridging Cu Ion for the Enhanced Adsorption of Methyl Orange. Molecules 2023; 28:molecules28052307. [PMID: 36903554 PMCID: PMC10005193 DOI: 10.3390/molecules28052307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan (CS) is a natural and low-cost adsorbent for capturing metal ions and organic compounds. However, the high solubility of CS in acidic solution would make it difficult to recycle the adsorbent from the liquid phase. In this study, the CS/Fe3O4 was prepared via Fe3O4 nanoparticles immobilized onto a CS surface, and the DCS/Fe3O4-Cu was further fabricated after surface modification and the adsorption of Cu ions. The meticulously tailored material displayed the sub-micron size of an agglomerated structure with numerous magnetic Fe3O4 nanoparticles. During the adsorption of methyl orange (MO), the DCS/Fe3O4-Cu delivered a superior removal efficiency of 96.4% at 40 min, which is more than twice the removal efficiency of 38.7% for pristine CS/Fe3O4. At an initial MO concentration of 100 mg L-1, the DCS/Fe3O4-Cu exhibited the maximum adsorption capacity of 144.60 mg g-1. The experimental data were well explained by the pseudo-second-order model and Langmuir isotherm, suggesting the dominant monolayer adsorption. The composite adsorbent still maintained a large removal rate of 93.5% after five regeneration cycles. This work develops an effective strategy to simultaneously achieve high adsorption performance and convenient recyclability for wastewater treatment.
Collapse
Affiliation(s)
- Daoguang Teng
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Jin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhuan Guo
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiang Liu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Wang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yijun Cao
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ling Zhang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (L.Z.); (Y.Z.)
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (L.Z.); (Y.Z.)
| |
Collapse
|
8
|
Xu C, Xu Y, Zhong D, Chang H, Mou J, Wang H, Shen H. Zr4+ and glutaraldehyde cross-linked polyethyleneimine functionalized chitosan composite: Synthesis, characterization, Cr(VI) adsorption performance, mechanism and regeneration. Int J Biol Macromol 2023; 239:124266. [PMID: 37003391 DOI: 10.1016/j.ijbiomac.2023.124266] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
In order to improve the stability, electrostatic interaction and ion exchange ability of chitosan for Cr (VI) removal, it is an effective strategy to introduce polyvalent metal ions and polymers into chitosan molecular chain through crosslinking. In this paper, Zr4+ and glutaraldehyde crosslinked polyethyleneimine functionalized chitosan (CGPZ) composite was successfully synthesized and characterized by XRD, SEM, FTIR, BET, and XPS. The results showed that polyethyleneimine was successfully grafted onto chitosan by Schiff base reaction, while the appearance of ZrO and ZrN bonds verified the successful preparation of CGPZ. The monolayer maximum adsorption capacity of Cr(VI) by CGPZ was 593.72 mg g-1 at 298 K and t = 210 min. The removal efficiency of 100 mg L-1 Cr(VI) reached 95.7 %. The thermodynamic, isotherm and kinetic results show that the adsorption process of Cr (VI) by CGPZ is a spontaneous endothermic process controlled by entropy, which accords with Freundlich model and pseudo-second-order kinetic model. The regeneration experiments show that both HCl and NaOH can effectively desorb Cr(III) and Cr(VI) from the adsorbent surface, and the adsorbent has good acid-base resistance and regeneration performance. The removal of Cr(VI) mainly involves electrostatic attraction, ion exchange, reduction and complexation. CGPZ can synergistically adsorb Cr(VI) by electrostatic interaction of -NH2/-C=N and ion exchange of Cl- ion in the center of Zr, then reduce Cr(VI) to Cr(III) (45.4 % at pH = 2.0) by the -OH group on its surface, and chelate Cr(III) through COO- and -NH- groups.
Collapse
Affiliation(s)
- Chunzi Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiaxin Mou
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hui Wang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hongyu Shen
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
9
|
Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Zhang X, Han R. Adsorption of 2,4-dichlorophenoxyacetic acid by UiO-66-NH 2 obtained in a green way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90738-90751. [PMID: 35879633 DOI: 10.1007/s11356-022-22127-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
In this study, a zirconium elemental organic framework (UiO-66-NH2) was prepared by a green synthesis method and showed a good adsorption performance for removing 2,4-dichlorophenoxyacetic acid (2,4-D) from water. UiO-66-NH2 was analyzed by a variety of characterization methods and the adsorption properties of 2,4-D on UiO-66-NH2 were investigated by static adsorption experiments. The results showed that the adsorption of 2,4-D had a wide pH range (2-10) and good salt tolerance with the adsorption equilibrium time about 2 h. The maximum adsorption capacity from Langmuir was up to 652 mg g-1 at 303 K. The isotherms can be described by Langmuir model and the adsorption kinetics was consistent with pseudo-second-order kinetic model and Elovich model. The regeneration efficiency was still 95% after 5 cycles with 0.01 mol L-1 NaOH as desorption solution. The feasibility of practical application of UiO-66-NH2 was explored by simulating actual wastewater at different pH. UiO-66-NH2 is promising to remove 2,4-D from water.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
11
|
Dovi E, Aryee AA, Liu M, Zhang X, Kani AN, Li J, Han R, Qu L. Biocomposite based on zirconium and amine-grafted walnut shell with antibacterial properties for the removal of Alizarin red in water: batch and column studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90530-90548. [PMID: 35870067 DOI: 10.1007/s11356-022-22081-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Recent progress has been made in the application of novel zirconium-loaded amine-grafted walnut shells as multifunctional adsorbents for the remediation of Alizarin red (AR) and bacteria in aqueous solutions. The morphology and functional groups of ACWNS@Zr were studied using Brunauer-Emmett-Teller (BET) techniques, X-ray diffraction (XRD), pH point of zero charges (pHpzc), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. Adsorption and regeneration tests were carried out in batch and column mode. The ACWNS@Zr had a Langmuir maximum capacity of 415.5 ± 6.1 mg g-1 at 303 K. The spread plate technique was used to evaluate the adsorbent's antimicrobial properties against Staphylococcus aureus and Escherichia coli. ACWNS@Zr exhibited inhibitory potential towards S. aureus and E. coli in the suspensions by 53.3% and 15.0%, respectively. Electrostatic interaction and complexation interaction could be the key mechanisms governing AR dye removal. Equilibrium isotherms fit Langmuir models better for both batch and column studies, while adsorption kinetics to pseudo-second-order and Thomas models for batch and column studies, respectively. Thermodynamic studies indicated that the adsorption process was endothermic and spontaneous. Furthermore, columns' mass transfer capacity (B) increased as the concentration increased due to the enhanced driving force for AR adsorption onto ACWNS@Zr. Regeneration with NaOH solution of AR-loaded ACWNS@Zr was remarkable.
Collapse
Affiliation(s)
- Evans Dovi
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Mingyu Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Xiaoting Zhang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Alexander Nti Kani
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Jianjun Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
12
|
Adsorptive Removal of Alizarin Red S onto Sulfuric Acid-Modified Avocado Seeds: Kinetics, Equilibrium, and Thermodynamic Studies. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3137870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present work evaluates the synthesis of a novel, inexpensive, and environmentally friendly chemically-treated avocado seed powder (CTASP) as an adsorbent in removing alizarin red S (ARS) from synthetic solution. By using a set of analytical techniques, including FTIR, XRD, EDX, RS, and SEM, the adsorbent was characterized for its physical and chemical properties. Batch study experiments were conducted to determine the effectiveness of the CTASP as an adsorbent. The maximum adsorption capacity of 67.08 mgg-1 was attained at optimum conditions of 3 gL-1 adsorbent dosage, pH 3, contact time of 30 min, and at temperature 303 K. After 30 minutes, the equilibrium was reached, and the experimental data was explained for isotherm, kinetic, and thermodynamic processes. The results indicated that pseudo-second-order kinetics and the Freundlich isotherm were the best fits for the data. The findings of the analysis of the thermodynamic parameters for the process showed that the system was an exothermic and spontaneous. According to the desorption studies, 0.1 M NaOH can be utilized as a separating reagent to desorb 90.53% of ARS that was adsorbed. Regeneration experiments were conducted to make the process more practical and affordable, and it was discovered that the CTASP adsorbent could be successfully regenerated up to four times. In comparison with other adsorbents, the current low-cost adsorbent had the exceptional regenerative capability and delivered multilayer adsorption capacity. Additionally, it has been demonstrated that the CTASP is an effective material for the detoxification of ARS dye from wastewater.
Collapse
|
13
|
Zr4+ cross-linked chitosan-thiourea composite for efficient detoxification of Cr(VI) ions in aqueous solution. Carbohydr Polym 2022; 296:119872. [DOI: 10.1016/j.carbpol.2022.119872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
|
14
|
Poly(amidoxime)-graft-magnetic chitosan for highly efficient and selective uranium extraction from seawater. Carbohydr Polym 2022; 301:120367. [DOI: 10.1016/j.carbpol.2022.120367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
|
15
|
Laddha H, Yadav P, Agarwal M, Gupta R. Quick and hassle-free smartphone's RGB-based color to photocatalytic degradation rate assessment of malachite green dye in water by fluorescent Zr-N-S co-doped carbon dots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56684-56695. [PMID: 35347616 DOI: 10.1007/s11356-022-19808-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Sunlight active blue emissive zirconium, nitrogen, and sulfur co-doped carbon dots (Zr-N-S-CDs) have been synthesized by microwave-induced pyrolysis for achieving efficient photocatalytic degradation of pollutant malachite green dye (MG) in water. Surface morphology studies using high-resolution transmission electron microscopy confirmed the formation of spherical-shaped CDs with an absorbance peak at 350 nm and emission peak at 437 nm in UV-vis and fluorescence spectroscopy, respectively. Surface functional groups, elemental composition, and metal/non-metal co-doping were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. To understand the photocatalytic performance of Zr-N-S-CDs, various parameters, such as the source of energy, concentration of dye, catalyst dosage, and change in pH, were investigated. MG dye (20 ppm) at a pH 7 with 0.5 mg/mL of Zr-N-S-CDs could be photodegraded efficiently in 90 min under sunlight (99%) compared to dark and artificial light conditions. Moreover, real-time analysis of degradation rate could be conveniently calculated by integrating the colorimetric responses of MG dye with RGB values obtained by the "Color Picker" app of a smartphone. The degradation rate obtained using a smartphone (97.89%) was found to be in agreement with the UV-vis spectroscopy (99%), thus, providing a new, handy, and instrument-free route for speedy and quantitative estimation of the degradation of hazardous MG dye by Zr-N-S-CDs.
Collapse
Affiliation(s)
- Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Priya Yadav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
16
|
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater 2022; 151:1-44. [DOI: 10.1016/j.actbio.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022]
|
17
|
Zhang Y, Yu X, Liu Y, Wu S, Yu R, Chen T. Adsorption of chlortetracycline in aquaculture wastewater by lanthanum modified multi-walled carbon nanotubes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:369-378. [PMID: 35502619 DOI: 10.1080/03601234.2022.2061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lanthanum modified multi-walled carbon nanotubes (La-CNTs) prepared by an impregnation method were investigated for the adsorption of chlortetracycline (CTC) in aquaculture wastewater. The adsorbents were characterized by SEM, EDS, XRD and BET. The effects of some factors including La-containing impregnant concentration, adsorbent dosage, CTC adsorbate concentration, adsorption time, pH of the adsorbate solution and additional ions on the CTC adsorption by La-CNTs were investigated in detail, and the optimal adsorption conditions were determined. The adsorption kinetics obeyed the quasi-second-order kinetic model. The adsorption isotherms obeyed the Langmuir model and the fitted maximum capacity of La-CNTs for CTC adsorption was 55.3 mg/g.
Collapse
Affiliation(s)
- Yuqi Zhang
- College of Ocean Technique and Environmental Engineering, Dalian Ocean University, Dalian, China
- Marine Biological Resources Utilization and Ecological Environmental Protection Technology Research Institute, Liaoning Industrial Technology Research Institute, Liaoning, China
| | - Xiaocai Yu
- College of Ocean Technique and Environmental Engineering, Dalian Ocean University, Dalian, China
- Marine Biological Resources Utilization and Ecological Environmental Protection Technology Research Institute, Liaoning Industrial Technology Research Institute, Liaoning, China
| | - Yifu Liu
- College of Ocean Technique and Environmental Engineering, Dalian Ocean University, Dalian, China
- Marine Biological Resources Utilization and Ecological Environmental Protection Technology Research Institute, Liaoning Industrial Technology Research Institute, Liaoning, China
| | - Shini Wu
- College of Ocean Technique and Environmental Engineering, Dalian Ocean University, Dalian, China
- Marine Biological Resources Utilization and Ecological Environmental Protection Technology Research Institute, Liaoning Industrial Technology Research Institute, Liaoning, China
| | - Runqiang Yu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Liaoning, China
| | - Tao Chen
- College of Ocean Technique and Environmental Engineering, Dalian Ocean University, Dalian, China
- Marine Biological Resources Utilization and Ecological Environmental Protection Technology Research Institute, Liaoning Industrial Technology Research Institute, Liaoning, China
| |
Collapse
|
18
|
Aryee AA, Han R. A novel biocomposite based on peanut husk with antibacterial properties for the efficient sequestration of trimethoprim in solution: Batch and column adsorption studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Liu M, Liu Q, Zang Z, Han R. Adsorptive removal of sulfosalicylic acid from aqueous medium by iron(III)-loaded magnetic chitosan/graphene oxide. J Colloid Interface Sci 2022; 606:1249-1260. [PMID: 34492463 DOI: 10.1016/j.jcis.2021.08.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023]
Abstract
In this study, an iron(III)-loaded magnetic chitosan/graphene oxide composite (Fe-MCG) was synthesized and applied for the adsorptive removal of sulfosalicylic acid (SSA) in aqueous solution. The results obtained from the application of various characterization techniques such as scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS) prove the successful formation of the composite with enhanced microstructure and superparamagnetic properties. The adsorption capacity of Fe-MCG towards SSA via batch mode reaches up to 135 mg/g at 293 K. The adsorption of SSA onto Fe-MCG is driven by monolayer adsorption with the chemical and physical adsorption processes both playing active roles. The Langmuir isotherm and pseudo-second-order kinetic models were observed to best describe the equilibrium adsorption and kinetic processes, respectively. The values obtained for the associated thermodynamic parameters confirm that the adsorptive process is spontaneous, exothermic and entropy-increasing. The efficacy and reusability of the spent Fe-MCG was studied using 0.01 mol/L NaOH solution. The kinetic process for the desorption of SSA from Fe-MCG is well described by the pseudo-second-order kinetic model. Based on the experimental results and XPS analysis, the underlying mechanisms for the uptake of SSA onto Fe-MCG involve electrostatic forces, complexation, π-π stacking, and hydrogen bonding. Overall, the excellent features of Fe-MCG enhance its potential as an adsorbent for the sequestration of SSA in environmental media.
Collapse
Affiliation(s)
- Mingyu Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| | - Qiong Liu
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, No 90 of Wangcheng Road, Luoyang 471000, PR China.
| | - Zhongyang Zang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| |
Collapse
|
20
|
Aryee AA, Dovi E, Li Q, Han R, Li Z, Qu L. Magnetic biocomposite based on peanut husk for adsorption of hexavalent chromium, Congo red and phosphate from solution: Characterization, kinetics, equilibrium, mechanism and antibacterial studies. CHEMOSPHERE 2022; 287:132030. [PMID: 34461338 DOI: 10.1016/j.chemosphere.2021.132030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
A biocomposite (PN-Fe3O4-PEI) was synthesized via the chemical modification of peanut husk (a low-cost adsorbent) with Fe3O4 particles and polyethyleneimine under benign environmental conditions. The modification agents used in this study were observed to overcome the challenges associated with the use pristine peanut husk with a concomitant enhancement in its efficiency as an adsorbent. Results from the characterization studies employed in this study confirmed PN-Fe3O4-PEI to be a crystalline magnetic adsorbent with a mesoporous structure. The adsorption property of the developed material (PN-Fe3O4-PEI) for wastewater treatment was investigated using Chromium (VI), Phosphates (PO43-) and Congo red (CR) as model pollutants. Using the batch method, PN-Fe3O4-PEI exhibited a maximum monolayer adsorption capacity of 58.4, 13.5 and 71.3 mg g-1 for Cr(VI), PO43- (as P g L-1) and CR, respectively and was dependent on temperature and initial adsorbate concentration. Kinetic studies revealed that the Elovich equation, the pseudo-second order kinetic model and double constant equation well described the uptake of Cr(VI), PO43- and CR onto PN-Fe3O4-PEI, respectively. These results may confirm the uptake of these pollutants to be mainly driven by chemical forces. In addition, PN-Fe3O4-PEI was observed to be efficient for the decontamination of the studied pollutants in real water samples as well as exhibit antibacterial properties towards the growth of S. aureus. These properties of PN-Fe3O4-PEI with its other excellent features such as high stability in solution, good regeneration properties and its facile retrieval from the solution using a magnet promote its suitability for practical wastewater treatment.
Collapse
Affiliation(s)
- Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, PR China
| | - Evans Dovi
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, PR China
| | - Qiongyang Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, PR China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, PR China.
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, PR China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, PR China
| |
Collapse
|
21
|
Zou X, Li M, Xiao H, Zhou S, Chen C, Zhao Y. Simulation study on real laminar assembly of g-C3N4 high performance free standing membrane with bio-based materials. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Kahya N, Erim FB. Graphene oxide/chitosan-based composite materials as adsorbents in dye removal. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1986700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nilay Kahya
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - F. Bedia Erim
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
23
|
Chen W, Liu Z, Tang Q, Du B, Huang X, Mo Y, Fan L, Luo H, Chen F. Assessment of a novel aminated magnetic adsorbent with excellent adsorption capacity for dyes and drugs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112809. [PMID: 34087644 DOI: 10.1016/j.jenvman.2021.112809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Dyes and drugs with high toxicity and low biodegradability pose risk to human health and ecological security, and should be purified efficiently from effluents before discharge. Traditional adsorbents are limited by the insufficient active adsorption sites and low stability. In this study, a novel aminated magnetic adsorbent (MCTs) was fabricated via two cross-linking steps using chitosan and triethylenetetramine to fill the gaps between current adsorbent and performance requirements. The morphological and physicochemical characteristics of the as-prepared MCTs were determined and identified with the aid of several characterization techniques. The adsorption performance of dyes and drugs was also investigated and represented by their adsorption capacities. In particular, the adsorption capacities of Congo Red, Chicago Sky Blue, Reactive Brilliant Red, and Ibuprofen were 583.11, 465.01, 403.12, and 291.71 mg/g, respectively. They also remained at around 80% after four reuse cycles. MCTs were adsorbed via a monolayer spontaneous chemical reaction, and hydrogen bonding and electrostatic interaction were the dominant adsorption mechanisms. These results demonstrated that the preparation of MCTs via two cross-linking steps enhanced the adsorbents' adsorption capacity, reusability, and stability. They provided a new perspective for the preparation of high-efficient adsorbents and the purification of dye- and drug-polluted wastewater.
Collapse
Affiliation(s)
- Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
| | - Zhujun Liu
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Qian Tang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Bin Du
- Admission and Employment Office, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianbin Huang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - You Mo
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Liangqian Fan
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Department of Municipal Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Fenghui Chen
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| |
Collapse
|
24
|
Wang J, Liu X, Yang M, Han H, Zhang S, Ouyang G, Han R. Removal of tetracycline using modified wheat straw from solution in batch and column modes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116698] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Mpatani FM, Han R, Aryee AA, Kani AN, Li Z, Qu L. Adsorption performance of modified agricultural waste materials for removal of emerging micro-contaminant bisphenol A: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146629. [PMID: 34030339 DOI: 10.1016/j.scitotenv.2021.146629] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
This review is an attempt to assess the adsorption performance of different green adsorbents derived from agricultural waste materials (AWMs) that were used for the elimination of bisphenol A (BPA) from aqueous matrices. Different processes including grafting, polymerization, activation and chemical treatment have been applied to functionalize and modify agricultural waste materials for the purposes of increasing their adsorptive performances toward BPA. The highest reported adsorption capacity of adsorbent from agricultural waste for the uptake of BPA is the highly microporous carbon adsorbent derived from Argan nut shell (1408 mg g-1). Hydrogen bonding, hydrophobic and π-π interactions were reported in most studies as the main mechanisms governing the adsorption of BPA onto agricultural waste adsorbents. Equilibrium isotherm and kinetic studies for the uptake of BPA onto agricultural waste adsorbents were best described by Langmuir/Freundlich model and pseudo-second order model, respectively. Despite the effective elimination of BPA by various agricultural waste adsorbents, an appropriate selection of elution solvent is important for effective desorption of BPA from spent adsorbent. To date, ethanol, diethyl ether-methanol, methanol-acetic acid, mineral acids and sodium hydroxide are the most eluents applied for desorption of BPA molecules loaded onto AW-adsorbents. Looking toward the future, studies on the agricultural waste adsorbents based on polymers, activated carbons, nanoparticles and highly microporous carbons should be mostly considered by the researchers toward removing BPA. These future studies should be performed both in laboratory, pilot and industrial scales, and also should report the sustainable techniques for disposal of the spent AW-adsorbents after lose their adsorption performance on BPA.
Collapse
Affiliation(s)
- Farid Mzee Mpatani
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, People's Republic of China.
| | - Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, People's Republic of China
| | - Alexander Nti Kani
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, People's Republic of China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, People's Republic of China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
26
|
Aryee AA, Dovi E, Guo Q, Liu M, Han R, Li Z, Qu L. Selective removal of anionic dyes in single and binary system using Zirconium and iminodiacetic acid modified magnetic peanut husk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37322-37337. [PMID: 33715124 DOI: 10.1007/s11356-021-13030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
A novel adsorbent (PN-Fe3O4-IDA-Zr) was developed from the chemical modification of peanut husk (a low cost material) with Fe3O4, iminodiacetic acid (IDA) and zirconium (Zr) and its efficacy for the sequestration of wastewater assessed using Alizarin red (AR) and Acid chrome blue K (AK) as model pollutants. To elucidate the characteristics of the formed adsorbent, analytical techniques such as the Bruauner-Emmet-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffractive spectroscopy (XRD) and vibrating sample magnetometer (VSM) were applied. Results from these studies confirmed the formation of a crystalline mesoporous adsorbent with surface properties which enhanced its usefulness. From the adsorption studies, it was observed that factors such as pH, salts, temperature and contact time influenced the uptake of the anionic dyes. The maximum monolayer capacity of PN-Fe3O4-IDA-Zr for AR was 49.4 mg g-1 (at 313 K) and was well fitted by the Langmuir model with the chemisorption process being the dominant reaction mechanism. In binary systems, PN-Fe3O4-IDA-Zr exhibited higher affinity for AR as compared with AK. The significant removal efficiency exhibited by this novel adsorbent as well as other unique features such as easy retrieval and high regeneration promotes its prospects as an adsorbent for practical wastewater remediation processes.
Collapse
Affiliation(s)
- Aaron Albert Aryee
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Evans Dovi
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Qiehui Guo
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Mingyu Liu
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
| | - Zhaohui Li
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
27
|
Dovi E, Kani AN, Aryee AA, Jie M, Li J, Li Z, Qu L, Han R. Decontamination of bisphenol A and Congo red dye from solution by using CTAB functionalised walnut shell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28732-28749. [PMID: 33550551 DOI: 10.1007/s11356-021-12550-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
In this research, the eco-friendly cationic surfactant modified walnut shell (WNS-CTAB) was synthesised to enhance the uptake for bisphenol A (BPA) and Congo red (CR) from aqueous solution. The characterisation of WNS-CTAB was performed using Fourier-transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), etc. to know its physiochemical properties. The adsorption equilibrium results were best described by the Langmuir isotherm model, which confirmed the monolayer adsorption of the pollutant molecules onto the adsorbent's surface. The maximum monolayer adsorption quantity of WNS-CTAB was established to be 38.5 mg g-1 for BPA and 104.4 mg g-1 for CR at 303 K, respectively. Pseudo-second-order kinetic models described the adsorption kinetics of both BPA and CR. Furthermore, the intra-particle diffusion was applied to analyse the kinetic results and was established that the rate was not solely controlled by diffusion. The mechanisms associated with BPA and CR adsorption onto the WNS-CTAB may include van der Waals interaction, hydrophobic interaction, and electrostatic force. WNS-CTAB demonstrated a good reusability potential with desorption through three successive adsorption-desorption cycles performed in both experiments. Moreover, in the binary system, the adsorption capacity of BPA witnessed a 66% decrease while CR saw marginal reduction of 8.0 %. This suggests that WNS-CTAB had a higher affinity for binding to CR with higher selectivity as compared with BPA. Therefore, WNS-CTAB has exhibited huge potential to serve as a functional material for practical use in the treatment of wastewater.
Collapse
Affiliation(s)
- Evans Dovi
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Alexander Nti Kani
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Ma Jie
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Jianjun Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
28
|
Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated magnetic chitosan graphene oxide. Int J Biol Macromol 2021; 182:1759-1768. [PMID: 34048839 DOI: 10.1016/j.ijbiomac.2021.05.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 01/18/2023]
Abstract
In this study, zirconium (IV)-impregnated magnetic chitosan graphene oxide (Zr-MCGO) was synthesized for removing fluoride from aqueous solution in batch mode. Characterization approaches (pHpzc, FTIR, SEM, XRD, VSM, Raman, BET, and XPS) proved the successful incorporation of Zr into the adsorbent. Zr-MCGO exhibited a relatively favorable and stable capacity of defluoridation at lower pH with a wide range of pH from 4.0 to 8.0, while there was slightly negative effect of ionic strength on adsorption. In addition, Elovich kinetic model and Koble-Corrigan isotherm model could describe the uptake of fluoride well. The adsorption capacity was 8.84 mg/g at 313 K and Zr-MCGO was easily separated from mixtures using external magnet. Based on the experiments and XPS, electrostatic force, ligand exchange, and Lewis acid-base interaction might be potential adsorption mechanisms. Pseudo-second-order model was more compatible with the desorption process by 0.01 mol/L NaHCO3 solution. Therefore, Zr-MCGO was a promising candidate for defluoridation on wastewater pollution remediation.
Collapse
|
29
|
Aramesh N, Bagheri AR, Bilal M. Chitosan-based hybrid materials for adsorptive removal of dyes and underlying interaction mechanisms. Int J Biol Macromol 2021; 183:399-422. [PMID: 33930445 DOI: 10.1016/j.ijbiomac.2021.04.158] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 02/01/2023]
Abstract
Environmental pollution by dyes molecules has become a subject of intensive research in recent years due to their hazardous effects on human health, organisms, and animals. Effective treatment and removal of dye molecules from the environmental matrices and water sources are of supreme concern. The deployment of cheap, safe, green, sustainable, and eco-friendly materials to remove these pollutants from water is the main challenge during the last decades. Chitosan and its derivatives/composites, as a cheap, easily available, and environmentally friendly sorbent, have attracted increasing attention for the removal of dye molecules. This review article focuses on the application of chitosan and chitosan-based smart adsorbents for the removal of dyes. Recent methods for the preparation of chitosan-based composites and their application in the removal of dyes are discussed. Moreover, the possible mechanisms for the interaction of chitosan and chitosan-based adsorbents with dyes molecules were evaluated. Finally, future prospects of using chitosan as an adsorbent for the removal of dye molecules are directed.
Collapse
Affiliation(s)
- Nahal Aramesh
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
30
|
Zirconium and iminodiacetic acid modified magnetic peanut husk as a novel adsorbent for the sequestration of phosphates from solution: Characterization, equilibrium and kinetic study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126260] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Aryee AA, Dovi E, Han R, Li Z, Qu L. One novel composite based on functionalized magnetic peanut husk as adsorbent for efficient sequestration of phosphate and Congo red from solution: Characterization, equilibrium, kinetic and mechanism studies. J Colloid Interface Sci 2021; 598:69-82. [PMID: 33892443 DOI: 10.1016/j.jcis.2021.03.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/29/2022]
Abstract
Accessibility to quality and clean water has in recent times been compromised due to the presence of pollutants, thus posing as a threat to the survival of living organisms. The adsorption technique in this regard has been observed to be useful in the remediation process with the material used as the adsorbent playing an integral role. In this study, a novel biocomposite (PN-Fe3O4-IDA-Al) based on peanut husk (a low-cost material) was developed by functionalization with aluminum (Al), iminodiacetic acid (IDA) and Fe3O4. The efficiency of PN-Fe3O4-IDA-Al as an adsorbent for the remediation of wastewater was evaluated using Congo red (CR) and phosphates (PO43-) as model pollutants. The results from the characterization studies confirmed PN-Fe3O4-IDA-Al to have superparamagnetic properties which ensures its easy retrieval. Adsorption studies indicated that PN-Fe3O4-IDA-Al had a maximum monolayer capacity of 79.0 ± 2.0 and 16.8 ± 2.5 mg g-1 for CR and PO43- (according to P), respectively, which was significantly dependent on factors such as reaction time, solution pH, temperature and the presence of some common anions. The Freundlich model was observed to better describe both adsorption processes with chemisorption being the principal underlying mechanism. Results from using real water samples confirmed PN-Fe3O4-IDA-Al to be highly efficient for practical remediation processes. These results coupled with the synthesis of PN-Fe3O4-IDA-Al under benign conditions using low-cost materials help to expound the knowledge on the use of low cost materials as the basis for the development of highly efficient adsorbents for wastewater remediation.
Collapse
Affiliation(s)
- Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China
| | - Evans Dovi
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| |
Collapse
|
32
|
Teymoorian T, Hashemi N, Mousazadeh MH, Entezarian Z. N, S doped carbon quantum dots inside mesoporous silica for effective adsorption of methylene blue dye. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04287-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractThis study aimed to develop non-metal elements for doping carbon quantum dots (CQDs) with nitrogen and sulfur (N, S-CQDs), which loaded inside hexagonal mesoporous silica (HMS) in order to effectively remove methylene blue dye (MB) from an aqueous solution. The histidine and cysteine amino acids were used as the source for synthesis N, S-CQDs through the hydrothermal method. Morphology and structure of the N, S-CQDs, and adsorbent (N, S-CQDs/HMS) were characterized by using different microscopic and spectroscopic techniques. The adsorption parameters such as adsorbent dosage (0.25–1 g/L), pH (2–10), contact time (15–75 min), and initial MB dye concentration (20–300 mg/L) were investigated. The maximum adsorption capacity and removal efficiency of MB were determined at 370.4 mg/g and 97%, respectively, under optimum conditions at 303 K. The adsorption isotherm studies were fitted with the Freundlich isotherm equation, and the dye removal kinetics of the adsorbent followed the pseudo-second-order model. Thermodynamic studies showed that the adsorption process had exothermic and spontaneous behavior. The removal of MB next to the Rhodamine B and Reactive Black 5 dyes indicated that the N, S-CQDs/HMS had excellent selective behavior for MB absorption. This prepared adsorbent could be well recycled with suitable activity after four repeated adsorption–desorption cycles. Results revealed that the porous characters, surface area, charge properties, reduction in the bandgap, and quantum yield of the N, S-CQDs/HMS were essential factors that affected dye adsorption.
Collapse
|
33
|
Facile synthesis of polyethyleneimine@Fe3O4 loaded with zirconium for enhanced phosphate adsorption: Performance and adsorption mechanism. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0663-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Tong X, Zhang J, Chen Q, Liu H. Zeolitic imidazolate framework-8/graphene oxide/magnetic chitosan nanocomposites for efficient removal of Congo red from aqueous solution. NEW J CHEM 2021. [DOI: 10.1039/d1nj03849d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel bio-adsorbent toward Congo red with large adsorption capacity.
Collapse
Affiliation(s)
- Xuefeng Tong
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jingjing Zhang
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qibin Chen
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
35
|
Ma J, Li J, Guo Q, Han H, Zhang S, Han R. Waste peanut shell modified with polyethyleneimine for enhancement of hexavalent chromium removal from solution in batch and column modes. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Guo Q, Zang Z, Ma J, Li J, Zhou T, Han R. Adsorption of copper ions from solution using xanthate wheat straw. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2029-2038. [PMID: 33263581 DOI: 10.2166/wst.2020.487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To enhance adsorption capacity of wheat straw (WS) toward copper ion from solution, carbon disulfide was used to modify WS by a facile grafting method through epichlorohydrin and ethylenediamine. So WS containing xanthate groups (XWS) was obtained. The XWS was characterized using elemental analysis, X-ray diffraction, infrared spectroscopy and adsorption property of XWS toward copper ions. The results showed that S was introduced into the surface of WS. The solution pH was in favor of Cu2+ adsorption at pH 5, while NaCl existing in solution was slightly favorable for adsorption. The adsorption kinetic followed the pseudo-second-order kinetic model, while the adsorption isotherm curve was well fitted using the Langmuir model. The adsorption capacity was 57.5 mg·g-1 from experiment. The process was entropy-produced, endothermic and spontaneous in nature. The column adsorption was performed and Yan model was good to predict the breakthrough curve. XWS as adsorbent is promising to remove copper ions from solution, and this offers one way of effective utilization of waste byproduct from agriculture.
Collapse
Affiliation(s)
- Qiehui Guo
- College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou 450001, China E-mail:
| | - Zhongyang Zang
- College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou 450001, China E-mail:
| | - Jie Ma
- College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou 450001, China E-mail:
| | - Jingyi Li
- College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou 450001, China E-mail:
| | - Tong Zhou
- College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou 450001, China E-mail:
| | - Runping Han
- College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou 450001, China E-mail:
| |
Collapse
|