1
|
Zhang L, Yan M, Li X, Chen C, Ma J, Wang Z. Interfacial Interaction between Zn 2+ and Surface Functional Groups Impacting Self-Assembly of ZnO on Cellulose Nanofibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39442770 DOI: 10.1021/acs.langmuir.4c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The mechanism underlying the interfacial interaction between ZnO and surface functional groups, which drives the self-assembly of ZnO nanoflowers on the cellulose nanofibril (CNF) surface, remains inadequately understood. Moreover, the ideal sites for the loading and growth of ZnO nanoflowers on the oxygen atoms (Os) of various surface functional groups on the CNF surface are not well-defined. This work addressed these gaps by systematically regulating the size and surface charge density of CNF templates through minor surface modifications and adjustments in processing cycles by using an ultrafine grinder. Physicochemical analyses demonstrated that the ZnO nanoflowers exhibited sizes (μm)/pieces/thickness (nm) of 0.86/16/20.1 for ZnO/TOCNFs, 0.88/17/20.4 for ZnO/ACNFs, and 0.89/16/20.5 for ZnO/ECNFs, respectively. Simulation calculations revealed that the interaction between Zn2+ ions and the Os of hydroxyl (-OH) groups exhibited the most favorable binding energy of -31.7 kcal/mol. These findings suggested that the surface charge density rather than specific surface functional groups primarily governs the loading and growth of ZnO nanoflowers on the CNF surface. The OS from -OH groups on the surface of CNF templates were optimal for both the loading and growth of ZnO nanoflowers. Overall, this study provides crucial theoretical insights into the design and optimization of the ZnO/CNF composites.
Collapse
Affiliation(s)
- Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ming Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| | - Changzhou Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Talukdar A, Kundu P, Bhattacharjee S, Dey S, Dey A, Biswas JK, Chaudhuri P, Bhattacharya S. Microplastics in mangroves with special reference to Asia: Occurrence, distribution, bioaccumulation and remediation options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166165. [PMID: 37574065 DOI: 10.1016/j.scitotenv.2023.166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Microplastics (MPs) are a new and lesser-known pollutant that has intrigued the interest of scientists all over the world in recent decades. MP (<5mm in size) can enter marine environments such as mangrove forests in a variety of ways, interfering with the health of the environment and organisms. Mangroves are now getting increasingly exposed to microplastic contamination due to their proximity to human activities and their position as critical transitional zones between land and sea. The present study reviews the status of MPs contamination specifically in mangrove ecosystems situated in Asia. Different sources and characteristics of MPs, subsequent deposition of MPs in mangrove water and sediments, bioaccumulation in different organisms are discussed in this context. MP concentrations in sediments and organisms were higher in mangrove forests exposed to fishing, coastal tourism, urban, and industrial wastewater than in pristine areas. The distribution of MPs varies from organism to organism in mangrove ecosystems, and is significantly influenced by their morphometric characteristics, feeding habits, dwelling environment etc. Mangrove plants can accumulate microplastics in their roots, stem and leaves through absorption, adsorption and entrapment helping in reducing abundance of microplastic in the surrounding environment. Several bacterial and fungal species are reported from these mangrove ecosystems, which are capable of degrading MPs. The bioremediation potential of mangrove plants offers an innovative and sustainable approach to mitigate microplastic pollution. Diverse mechanisms of MP biodegradation by mangrove dwelling organisms are discussed in this context. Biotechnological applications can be utilized to explore the genetic potential of the floral and faunal species found in the Asian mangroves. Detailed studies are required to monitor, control, and evaluate MP pollution in sediments and various organisms in mangrove ecosystems in Asia as well as in other parts of the world.
Collapse
Affiliation(s)
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Shrayan Bhattacharjee
- Ecosystem and Ecology Laboratory, Post-graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Howrah 711301, West Bengal, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology & Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Nadia, West Bengal 741235, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| |
Collapse
|
3
|
Xue Y, Lu Y, Feng K, Zhang C, Feng X, Zhao Y, Chen L. Preparation of the self-accelerating photocatalytic self-cleaning carboxymethyl cellulose sodium-based hydrogel for removing cationic dyes. Int J Biol Macromol 2023; 250:125891. [PMID: 37473895 DOI: 10.1016/j.ijbiomac.2023.125891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Hydrogels loaded with photocatalysts have shown great potential in effectively degrading dye wastewater. In this work, carboxymethyl cellulose sodium-based hydrogels loaded with nitrogen-doped graphene oxide-zinc oxide-zinc peroxide (NGO-ZnO-ZnO2) were synthesized using hydrothermal reaction and in-situ synthesis method. NGO acts as an electron mediator, suppressing the recombination of photoinduced electrons and holes. ZnO2 decomposes to generate hydrogen peroxide (H2O2), promoting a self-enhanced photocatalytic reaction. Carboxymethyl cellulose sodium (CMC) acts as a dispersant, improving the uniformity and stability of NGO-ZnO-ZnO2 within the hydrogel. The results demonstrate that NGO-ZnO-ZnO2 exhibits high photocatalytic degradation efficiency towards methyl orange (MO) (10 mg/L) and rhodamine B (RhB) (50 mg/L), with degradation rates of 99.99 % (200 min) and 99.26 % (160 min), respectively. The carboxymethyl cellulose sodium-based hydrogel achieves a photocatalytic degradation rate of 95.85 % (220 min) for RhB (10 mg/L). After 5 cycles of repeated photocatalytic tests, the degradation efficiency of the hydrogel towards RhB reaches 80.81 %. This work provides a low-cost and convenient method for constructing novel hydrogel carriers with high photocatalytic stability and efficiency.
Collapse
Affiliation(s)
- Yingying Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yujia Lu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kezhuo Feng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chunyang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xia Feng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
4
|
Shi C, Zhang L, Shi Z, Wang Z, Ma J. Mechanistic investigation of cellulose regulating the morphology and photocatalytic activity of Al-doped ZnO. Int J Biol Macromol 2023; 228:435-444. [PMID: 36572077 DOI: 10.1016/j.ijbiomac.2022.12.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The morphology of metal oxide is a crucial factor for improving of catalysis properties. As a renewable and environmentally friendly biomass material, cellulose has been widely used to induce the morphology of semiconductors. The contributions of cellulose hydroxyl groups and spatial hindrance in tailoring Al doped ZnO (AZO) morphologies were investigated. The morphology of AZO could be gradually induced from flake-like to flower-like with the increase of cellulose hydroxyl content per unit volume. At the same time, the changes in spatial hindrance had no apparent effect on the morphology of AZO. So the cellulose hydroxyl groups that act to induce the in situ growth of AZO nanoparticles on cellulose substrates. The results further confirmed the strong interaction between cellulose hydroxyl groups and Zn2+. In addition, the photocatalytic activities of Al-doped ZnO/cellulose nanocomposites (AZOC) with different morphologies were evaluated by the degradation of bisphenol A (BPA). The high hydroxyl contents of cellulose substrates contributed to the growth of flower-like AZO with high light utilization and photocatalytic activity. This work proposed cleaner strategies to modify semiconductor morphologies for photocatalysis by regulating the content of cellulose hydroxyl contents.
Collapse
Affiliation(s)
- Chun Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; University Key Laboratory of Biomass Chemical Refinery & Synthesis, Southwest Forestry University, Kunming 650224, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhengjun Shi
- University Key Laboratory of Biomass Chemical Refinery & Synthesis, Southwest Forestry University, Kunming 650224, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Facile preparation of cellulose nanocrystals/ZnO hybrids using acidified ZnCl 2 as cellulose hydrolytic media and ZnO precursor. Int J Biol Macromol 2023; 227:863-871. [PMID: 36535352 DOI: 10.1016/j.ijbiomac.2022.12.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/18/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Hybridization of nanocellulose with zinc oxide nanoparticles can improve the dispersibility of the zinc oxide and bring new functions to the bio-based products. In this study, cellulose nanocrystal/zinc oxide (CNC/ZnO) nanohybrids with reinforcing and antibacterial properties were prepared via a facile one-pot route. Microcrystalline cellulose (MCC) was first treated with acidified zinc chloride and hydrolyzed into CNCs, which then served as a stabilizing and supporting agent for the in-situ growth of ZnO nanoparticles during subsequent chemical precipitation. The acidified ZnCl2 solution played a dual role, acting both as cellulose hydrolytic media and as ZnO precursor. By adjusting the pH of the zinc precursor solution (pH = 9-12), well-dispersed rod-like (length: 137.0-468.0 nm, width: 54.1-154.1 nm) and flower-like (average diameter: 179.6 nm) ZnO nanoparticles with hexagonal wurtzite structure were obtained. CNC/ZnO nanohybrids were incorporated into waterborne polyurethane (WPU) films. The Young's modulus and tensile strength of the nanocomposite films increased gradually from 154.8 to 509.0 MPa and from 16.5 to 29.9 MPa, respectively, with increasing CNC/ZnO nanofiller content up to 10 wt%. The 10 % CNC/ZnO composites showed inhibition rates to both E. coli and S. aureus above 88.8 %.
Collapse
|
6
|
Halogen doped g-C3N4/ZnAl-LDH hybrid as a Z-scheme photocatalyst for efficient degradation for tetracycline in seawater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Chai YD, Pang YL, Lim S, Chong WC, Lai CW, Abdullah AZ. Recent Progress on Tailoring the Biomass-Derived Cellulose Hybrid Composite Photocatalysts. Polymers (Basel) 2022; 14:5244. [PMID: 36501638 PMCID: PMC9736154 DOI: 10.3390/polym14235244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Biomass-derived cellulose hybrid composite materials are promising for application in the field of photocatalysis due to their excellent properties. The excellent properties between biomass-derived cellulose and photocatalyst materials was induced by biocompatibility and high hydrophilicity of the cellulose components. Biomass-derived cellulose exhibited huge amount of electron-rich hydroxyl group which could promote superior interaction with the photocatalyst. Hence, the original sources and types of cellulose, synthesizing methods, and fabrication cellulose composites together with applications are reviewed in this paper. Different types of biomasses such as biochar, activated carbon (AC), cellulose, chitosan, and chitin were discussed. Cellulose is categorized as plant cellulose, bacterial cellulose, algae cellulose, and tunicate cellulose. The extraction and purification steps of cellulose were explained in detail. Next, the common photocatalyst nanomaterials including titanium dioxide (TiO2), zinc oxide (ZnO), graphitic carbon nitride (g-C3N4), and graphene, were introduced based on their distinct structures, advantages, and limitations in water treatment applications. The synthesizing method of TiO2-based photocatalyst includes hydrothermal synthesis, sol-gel synthesis, and chemical vapor deposition synthesis. Different synthesizing methods contribute toward different TiO2 forms in terms of structural phases and surface morphology. The fabrication and performance of cellulose composite catalysts give readers a better understanding of the incorporation of cellulose in the development of sustainable and robust photocatalysts. The modifications including metal doping, non-metal doping, and metal-organic frameworks (MOFs) showed improvements on the degradation performance of cellulose composite catalysts. The information and evidence on the fabrication techniques of biomass-derived cellulose hybrid photocatalyst and its recent application in the field of water treatment were reviewed thoroughly in this review paper.
Collapse
Affiliation(s)
- Yi Ding Chai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
8
|
Peramune D, Manatunga DC, Dassanayake RS, Premalal V, Liyanage RN, Gunathilake C, Abidi N. Recent advances in biopolymer-based advanced oxidation processes for dye removal applications: A review. ENVIRONMENTAL RESEARCH 2022; 215:114242. [PMID: 36067842 DOI: 10.1016/j.envres.2022.114242] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/03/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, synthetic dye-contaminated wastewater has attracted considerable global attention due to the low biodegradability and the ability of organic dyes to persist and remain toxic, causing numerous health and environmental concerns. As a result of the recalcitrant nature of those complex organic dyes, the remediation of wastewater using conventional wastewater treatment techniques is becoming increasingly challenging. In recent years, advanced oxidation processes (AOPs) have emerged as a potential alternative to treat organic dyestuffs discharged from industries. The most widely employed AOPs include photocatalysis, ozonation, Fenton oxidation, electrochemical oxidation, catalytic heterogeneous oxidation, and ultrasound irradiation. These processes involve the generation of highly reactive radicals to oxidize organic dyes into innocuous minerals. However, many conventional AOPs suffer from several setbacks, including the high cost, high consumption of reagents and substrates, self-agglomeration of catalysts, limited reusability, and the requirement of light, ultrasound, or electricity. Therefore, there has been significant interest in improving the performance of conventional AOPs using biopolymers and heterogeneous catalysts such as metal oxide nanoparticles (MONPs). Biopolymers have been widely considered in developing green, sustainable, eco-friendly, and low-cost AOP-based dye removal technologies. They inherit intriguing properties like biodegradability, renewability, nontoxicity, relative abundance, and sorption. In addition, the immobilization of catalysts on biopolymer supports has been proven to possess excellent catalytic activity and turnover numbers. The current review provides comprehensive coverage of different AOPs and how efficiently biopolymers, including cellulose, chitin, chitosan, alginate, gelatin, guar gum, keratin, silk fibroin, zein, albumin, lignin, and starch, have been integrated with heterogeneous AOPs in dye removal applications. This review also discusses the general degradation mechanisms of AOPs, applications of biopolymers in AOPs and the roles of biopolymers in AOPs-based dye removal processes. Furthermore, key challenges and future perspectives of biopolymer-based AOPs have also been highlighted.
Collapse
Affiliation(s)
- Dinusha Peramune
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka.
| | - Vikum Premalal
- Department of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Renuka N Liyanage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Chamila Gunathilake
- Department of Material and Nanoscience Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, 60200, Sri Lanka
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
9
|
Cai S, Cao G, Chen Y, Zhang H, Jiang C, Tian Y. High-performance electrically conductive adhesives with aluminum-doped zinc oxide (AZO) for various flexible electronic devices. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process. Carbohydr Polym 2022; 296:119942. [DOI: 10.1016/j.carbpol.2022.119942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 12/25/2022]
|
11
|
Karalija E, Carbó M, Coppi A, Colzi I, Dainelli M, Gašparović M, Grebenc T, Gonnelli C, Papadakis V, Pilić S, Šibanc N, Valledor L, Poma A, Martinelli F. Interplay of plastic pollution with algae and plants: hidden danger or a blessing? JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129450. [PMID: 35999715 DOI: 10.1016/j.jhazmat.2022.129450] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
In the era of plastic pollution, plants have been discarded as a system that is not affected by micro and nanoplastics, but contrary to beliefs that plants cannot absorb plastic particles, recent research proved otherwise. The presented review gives insight into known aspects of plants' interplay with plastics and how plants' ability to absorb plastic particles can be utilized to remove plastics from water and soil systems. Microplastics usually cannot be absorbed by plant root systems due to their size, but some reports indicate they might enter plant tissues through stomata. On the other hand, nanoparticles can enter plant root systems, and reports of their transport via xylem to upper plant parts have been recorded. Bioaccumulation of nanoplastics in upper plant parts is still not confirmed. The prospects of using biosystems for the remediation of soils contaminated with plastics are still unknown. However, algae could be used to degrade plastic particles in water systems through enzyme facilitated degradation processes. Considering the amount of plastic pollution, especially in the oceans, further research is necessary on the utilization of algae in plastic degradation. Special attention should be given to the research concerning utilization of algae with restricted algal growth, ensuring that a different problem is not induced, "sea blooming", during the degradation of plastics.
Collapse
Affiliation(s)
- Erna Karalija
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain.
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia.
| | - Tine Grebenc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia.
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Vassilis Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, N. Plastira 100, GR-70013 Heraklion, Crete, Greece.
| | - Selma Pilić
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Nataša Šibanc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia.
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain.
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, Università degli Studi dell'Aquila, Laboratory of Genetics and Mutagenesis, via Vetoio 1, 67100 L'Aquila, Italy.
| | - Federico Martinelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| |
Collapse
|
12
|
He Y, Fu Q, Li X, Yin L, Wang D, Liu Y. ZIF-8-derived photocatalyst membrane for water decontamination: From static adsorption-degradation to dynamic flow removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153865. [PMID: 35176358 DOI: 10.1016/j.scitotenv.2022.153865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Photocatalysis has been considered a promising method for environmental purification. However, powder nanomaterials are not suitable for large-scale application due to the limit of low recyclability and energy-intensive operation. Integrating and depositing powder photocatalysts on monolithic substrates may solve these issues. In this study, a ZIF-8 photocatalyst membrane and its derived product (ZnS photocatalyst membrane) was constructed by a facile in-situ treatment of cellulose-based substrate (take filter paper as an example). Both the two nanomaterials were confirmed to be tightly anchored to filter paper with the aid of chemical interaction. Under visible light irradiation, excellent dynamic-flow photocatalytic removal efficiencies of methylene blue (MB) degradation (97% within 80 min, k = 0.042 ± 0.002 min-1) and Cr(VI) reduction (100% within 60 min, k = 0.116 ± 0.007 min-1) were achieved by the prepared ZIF-8 photocatalyst membrane and its derived ZnS photocatalyst, respectively. Considering the high MB adsorption capacity and facile regeneration process of ZIF-8 photocatalyst membrane, the adsorption-degradation strategy was promising for its universal applications. The MB degradation pathway and photocatalytic mechanisms were also explored. Ultimately, a comprehensive discussion on the advantages and implications of prepared photocatalyst membranes for photocatalytic water treatment was rationally proposed. This study provided a promising method for water decontamination and demonstrated the significant superiority of monolithic membrane for photocatalytic water treatment.
Collapse
Affiliation(s)
- Yanying He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaopei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Linmiao Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
13
|
Das R, Lindström T, Sharma PR, Chi K, Hsiao BS. Nanocellulose for Sustainable Water Purification. Chem Rev 2022; 122:8936-9031. [PMID: 35330990 DOI: 10.1021/acs.chemrev.1c00683] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure-property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.
Collapse
Affiliation(s)
- Rasel Das
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tom Lindström
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Priyanka R Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai Chi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
14
|
Facile fabrication of multiscale ZnO/cellulose composite membrane towards enhancing photocatalytic and mechanical properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
SarmastSh M, George S, Dayang Radiah C, Hoey D, Abdullah N, Kamarudin S. Synthesis of bioactive glass using cellulose nano fibre template. J Mech Behav Biomed Mater 2022; 130:105174. [DOI: 10.1016/j.jmbbm.2022.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
|
16
|
Hitam CNC, Jalil AA. Recent advances on nanocellulose biomaterials for environmental health photoremediation: An overview. ENVIRONMENTAL RESEARCH 2022; 204:111964. [PMID: 34461122 DOI: 10.1016/j.envres.2021.111964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
As one of the potential bionanomaterials, nanocellulose has appeared as a favorable candidate for photoremediation of the environment because of its abundance in nature, inexpensive, eco-friendly, decomposable, high surface area, and outstanding mechanical properties. The current review carefully summarized the diverse type of nanocellulose, their preparation approaches, and several previous works on the use of nanocellulose for photoremediation. These include the role of nanocellulose for the increased surface active site of the hybrid photocatalysts by providing a large surface area for enhanced adsorption of photons and pollutant molecules, as a dispersing agent to increase distribution of metal/non-metal dopants photocatalysts, as well as for controlled size and morphology of the dopants photocatalysts. Furthermore, the recommendations for upcoming research provided in this review are anticipated to ignite an idea for the development of other nanocellulose-based photocatalysts. Other than delivering beneficial information on the present growth of the nanocellulose biomaterials photocatalysts, this review is expected will attract more interest to the utilization of nanocellulose photocatalyst and distribute additional knowledge in this exciting area of environmental photoremediation. This could be attained by considering that a review on nanocellulose biomaterials for environmental health photoremediation has not been described elsewhere, notwithstanding intensive research works have been dedicated to this topic.
Collapse
Affiliation(s)
- C N C Hitam
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
17
|
Kumari A, Rajput VD, Mandzhieva SS, Rajput S, Minkina T, Kaur R, Sushkova S, Kumari P, Ranjan A, Kalinitchenko VP, Glinushkin AP. Microplastic Pollution: An Emerging Threat to Terrestrial Plants and Insights into Its Remediation Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 11:340. [PMID: 35161320 PMCID: PMC8837937 DOI: 10.3390/plants11030340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) are ubiquitous and constitute a global hazard to the environment because of their robustness, resilience, and long-term presence in the ecosystem. For now, the majority of research has primarily focused on marine and freshwater ecosystems, with just a small amount of attention towards the terrestrial ecosystems. Although terrestrial ecosystems are recognized as the origins and routes for MPs to reach the sea, there is a paucity of knowledge about these ecological compartments, which is necessary for conducting effective ecological risk assessments. Moreover, because of their high persistence and widespread usage in agriculture, agribusiness, and allied sectors, the presence of MPs in arable soils is undoubtedly an undeniable and severe concern. Consequently, in the recent decade, the potential risk of MPs in food production, as well as their impact on plant growth and development, has received a great deal of interest. Thus, a thorough understanding of the fate and risks MPs, as well as prospective removal procedures for safe and viable agricultural operations in real-world circumstances, are urgently needed. Therefore, the current review is proposed to highlight the potential sources and interactions of MPs with agroecosystems and plants, along with their remediation strategies.
Collapse
Affiliation(s)
- Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Saglara S. Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Sneh Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (S.R.); (R.K.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Rajanbir Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (S.R.); (R.K.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Poonam Kumari
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Valery P. Kalinitchenko
- All-Russia Research Institute for Phytopathology RAS, 5 Institute St., Big Vyazyomy, 143050 Moscow, Russia; (V.P.K.); (A.P.G.)
- Institute of Fertility of Soils of South Russia, Krivoshlykova St., Persianovka, 346493 Moscow, Russia
| | - Alexey P. Glinushkin
- All-Russia Research Institute for Phytopathology RAS, 5 Institute St., Big Vyazyomy, 143050 Moscow, Russia; (V.P.K.); (A.P.G.)
| |
Collapse
|
18
|
Yi J, Wu X, Wu H, Guo J, Wu K, Zhang L. Facile synthesis of novel NH 2-MIL-53(Fe)/AgSCN heterojunction composites as a highly efficient photocatalyst for ciprofloxacin degradation and H 2 production under visible-light irradiation. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00349f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel NH2-MIL-53(Fe)/AgSCN composite photocatalyst was successfully prepared by a one-step chemical precipitation method, the composite show high photocatalytic activity for antibiotics degradation and H2 evolution under visible light irradiation.
Collapse
Affiliation(s)
- Jungang Yi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Xianghui Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Huadong Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Jia Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Kun Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
- The College of Post and Telecommunication of Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Linfeng Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
19
|
Ikram M, Imran M, Hayat S, Shahzadi A, Haider A, Naz S, Ul-Hamid A, Nabgan W, Fazal I, Ali S. MoS 2/cellulose-doped ZnO nanorods for catalytic, antibacterial and molecular docking studies. NANOSCALE ADVANCES 2021; 4:211-225. [PMID: 36132956 PMCID: PMC9417535 DOI: 10.1039/d1na00648g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/30/2021] [Indexed: 05/31/2023]
Abstract
Cellulose nanocrystals (CNCs) and molybdenum disulphide (MoS2) incorporated into ZnO nanorods (NRs) were synthesized via a chemical precipitation route at room temperature. All concerned samples were characterized to examine their optical properties, elemental composition, phase formation, surface morphology and functional group presence. The aim of this research was to enhance the catalytic properties of ZnO by co-doping with various concentrations of CNCs and MoS2 NRs. It was renowned that doped ZnO NRs showed superior catalytic activity compared to bare ZnO NRs. Statistically significant (p < 0.05) inhibition zones for samples were recorded for E. coli and S. aureus at low and high concentrations, respectively. The in vitro bactericidal potential of ZnO-CNC and ZnO-CNC-MoS2 nanocomposites was further confirmed through in silico molecular docking predictions against the DHFR and DHPS enzymes of E. coli and S. aureus. Molecular docking studies suggested the inhibition of these enzyme targets by CNC nanocomposites as a possible mechanism governing their bactericidal activity.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Application Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Muhammad Imran
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology Beijing 100029 China
| | - Shoukat Hayat
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, University of the Lahore Lahore Pakistan
| | - Ali Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences Lahore 54000 Punjab Pakistan
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Iqra Fazal
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
20
|
Yang Y, Ma C, He X, Li J, Li M, Wang J. Calcined Aluminum Sludge as a Heterogeneous Fenton-Like Catalyst for Methylene Blue Degradation by Three-Dimensional Electrochemical System. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00684-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Yu Y, Chen D, Xu W, Fang J, Sun J, Liu Z, Chen Y, Liang Y, Fang Z. Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C 3N 4/calcined-LDH and its application in synthetic mariculture wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126183. [PMID: 34492954 DOI: 10.1016/j.jhazmat.2021.126183] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
In this work, a modified g-C3N4/MgZnAl-calcined layered double hydroxide composite (M-CN/cLDH) was successfully fabricated via a template method. The composite material is a hierarchical porous flower-like nanostructure self-assembled from stacked hybrid flakes. The 3D M-CN/cLDH architectures exhibit a synergistic effect of adsorption and photocatalysis for eliminating typical tetracycline antibiotics in seawater, i.e., oxytetracycline (OTC), tetracycline (TC), chlortetracycline (CTC), and doxycycline (DXC). The synergistic removal rate of OTC in seawater of M-CN/cLDH is 2.73 times higher than that of g-C3N4 after 120 min of visible-light illumination, and M-CN/cLDH also performs better adsorption-photocatalytic degradation on OTC in the continuous flow reaction process. The superior adsorption capability of the M-CN/cLDH is attributed to the open porous structures of cLDH, and its excellent photocatalytic degradation activity is ascribed to the closely bonded heterojunctions between g-C3N4 (CN) and cLDH double layers. The mass spectra reveals the degradation pathways of OTC, and its byproducts are less toxic after degradation for 120 min. The exploration of the M-CN/cLDH in synthetic mariculture wastewater suggested a huge potential for its practical application. With the assistance of magnesium ammonium phosphate (MAP) precipitation pretreatment, the material can effectively retain the high OTC removal rate in the synthetic mariculture wastewater circumstance.
Collapse
Affiliation(s)
- Yutang Yu
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dongdong Chen
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Jianzhang Fang
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006, China.
| | - Jianliang Sun
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Yuanmei Chen
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ying Liang
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006, China
| |
Collapse
|
22
|
Investigation of the Different Morphologies of Zinc Oxide (ZnO) in Cellulose/ZnO Hybrid Aerogel on the Photocatalytic Degradation Efficiency of Methyl Orange. Top Catal 2021. [DOI: 10.1007/s11244-021-01476-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Li X, Zhang L, Wang Z, Wu S, Ma J. Cellulose controlled zinc oxide nanoparticles with adjustable morphology and their photocatalytic performances. Carbohydr Polym 2021; 259:117752. [PMID: 33674006 DOI: 10.1016/j.carbpol.2021.117752] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023]
Abstract
The cellulose fibers with different size and aspect ratio was used as the matrix for the controllable preparation of zinc oxide (ZnO) to synthesize ZnO/cellulose composite catalyst with adjustable photocatalytic properties. The ZnO with different morphology of sphere, sheet, and flower, was in-situ synthesized on cellulose fibers by chemical deposition method, the flower-like ZnO supported on cellulose fiber exhibited the best photocatalytic activity. Furthermore, with the decrease of fiber size, the morphology of ZnO changed from most sheet to fully self-assembled flower shape, and the average thickness of nanosheets was increased. Cellulose fibers with smaller size and higher aspect ratio were more likely to form a 3D network structure with rich pores and stable mechanical properties. Significantly, with the decreasing of fiber size, ZnO/NFC has excellent photocatalytic efficiency (100 %). All ZnO/cellulose composites can be recycled more than five times.
Collapse
Affiliation(s)
- Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
24
|
Nie C, Shen T, Hu W, Ma Q, Zhang J, Hu S, Tian H, Wu H, Luo X, Wang J. Characterization and antibacterial properties of epsilon-poly- l-lysine grafted multi-functional cellulose beads. Carbohydr Polym 2021; 262:117902. [PMID: 33838793 DOI: 10.1016/j.carbpol.2021.117902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
In recent years, harmful microorganisms in water pose great harm to ecological environment and human health. To solve this problem, epsilon-poly-l-lysine (EPL) grafted cellulose beads were prepared via 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) mediated oxidation and carbodiimide mediated cross-linking reaction. Hydroxyl groups on C6 of cellulose were oxidized to carboxyl groups by TEMPO and grafting reaction was achieved between newly formed carboxyl groups of cellulose and amino of EPL. The beads were characterized by FTIR, SEM, XRD and TGA. The crystalline form of cellulose transformed from cellulose I to cellulose II after being dissolved and regenerated. The grafted cellulose beads showed good antibacterial activities against Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus and Alicyclobacillus acidoterrestris with 10 h. The beads could be biodegraded in soil after 28 days. It is expected that the bio-based composite beads could have potential applications in water purification and food treatment fields.
Collapse
Affiliation(s)
- Chunling Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Ting Shen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, PR China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, PR China
| | - Qin Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jiahui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Shuqian Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Huafeng Tian
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Hao Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Xiaogang Luo
- Wuhan Institute of Technology, School of Chemical Engineering and Pharmacy, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Key Laboratory for Green Chemical Process of Ministry of Education, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China; School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, Henan Province, PR China.
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|