1
|
Navazeni M, Zolfigol MA, Torabi M, Khazaei A. Application of magnetic deep eutectic solvents as an efficient catalyst in the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a cooperative vinylogous anomeric-based oxidation. RSC Adv 2024; 14:34668-34678. [PMID: 39479491 PMCID: PMC11520567 DOI: 10.1039/d4ra05177g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
Magnetic deep eutectic solvents (MDESs) are adjuvants and an emerging subclass of heterogeneous catalysts in organic transformations. Herein, choline chloride (Ch/Cl) embedded on naphthalene bis-urea-supported magnetic nanoparticles, namely, Fe3O4@SiO2@DES1, was constructed by a special approach. This compound was scrutinized and characterized by instrumental techniques such as FTIR, thermogravimetry and derivative thermogravimetry (TGA/DTG), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) analyses. Potential catalytic activity of Fe3O4@SiO2@DES1 was impressive, facilitating the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a multicomponent method with 65-98% yields. Enhanced rates, high yields, mild reaction conditions, and recycling and reusability of Fe3O4@SiO2@DES1 are the distinct benefits of this catalytic organic synthetic methodology.
Collapse
Affiliation(s)
- Monireh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
2
|
Liu X, Liu F. Bimetallic (AuAg, AuPd and AgPd) nanoparticles supported on cellulose-based hydrogel for reusable catalysis. Carbohydr Polym 2023; 310:120726. [PMID: 36925251 DOI: 10.1016/j.carbpol.2023.120726] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Biopolymer-derived hydrogels with low-cost and sustainable features have been considered as fascinating supported materials for metal nanoparticles. Cellulose, as the most abundant biopolymer, is a renewable raw material to prepare biopolymer-derived hydrogels for catalysis. Here, a cellulose-based hydrogel is designed to load bimetallic (AuAg, AuPd and AgPd) nanoparticles. 4-Nitrophenol reduction and Suzuki-Miyaura coupling reactions are selected to evaluate and compare the catalytic performance of the resulting bimetallic nanoparticle-loaded cellulose-based composite hydrogels. The bimetallic nanocomposite hydrogels are easy to be recycled over 10 times during the catalytic experiments and possess good applicability and generality for various substrates. The catalytic activity of bimetallic nanocomposite hydrogels was compared with recent literatures. In addition, the possible catalytic mechanism is also proposed. This work is expected to give a new insight for designing and preparing bimetallic nanoparticle-based cellulose hydrogels and proves its applicability and prospect in the catalytic field.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
3
|
El Baraka Y, Hamdoun G, El Brahmi N, El Kazzouli S. Unlocking the Potential of Deep Eutectic Solvents for C-H Activation and Cross-Coupling Reactions: A Review. Molecules 2023; 28:4651. [PMID: 37375204 DOI: 10.3390/molecules28124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Green chemistry principles have underpinned the development of deep eutectic solvents (DESs). In this brief overview, we discuss the potential of DESs as a greener alternative to volatile organic solvents for cross-coupling and C-H activation reactions in organic chemistry. DESs offer numerous benefits, such as easy preparation, low toxicity, high biodegradability, and the potential to replace volatile organic compounds. The ability of DESs to recover the catalyst-solvent system enhances their sustainability. This review highlights recent advances and challenges in utilizing DESs as a reaction media, as well as the impact of physicochemical properties on the reaction process. Several types of reactions are studied to highlight their effectiveness at promoting C-C bond formation. Aside from demonstrating the success of DESs in this context, this review also discusses the limitations and future prospects of DESs in organic chemistry.
Collapse
Affiliation(s)
- Yassine El Baraka
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
| | - Ghanem Hamdoun
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
| |
Collapse
|
4
|
Dong L, Ren S, Zhang X, Yang Y, Wu Q, Lei T. In-situ synthesis of Pt nanoparticles/reduced graphene oxide/cellulose nanohybrid for nonenzymatic glucose sensing. Carbohydr Polym 2023; 303:120463. [PMID: 36657845 DOI: 10.1016/j.carbpol.2022.120463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
In recent years, nanocellulose-based bioinorganic nanohybrids have been exploited in numerous applications due to their unique nanostructure, excellent catalytic properties, and good biocompatibility. To the best of our knowledge, this is the first report on the simple and effective synthesis of graphene/cellulose (RGO/CNC) matrix-supported platinum nanoparticles (Pt NPs) for nonenzymatic electrochemical glucose sensing. The Pt/RGO/CNC nanohybrid presented a porous network structure, in which Pt NPs, RGO, and CNCs were integrated well. Here, cellulose nanocrystals act as a biocompatible framework for wrapped RGO and monodispersed Pt nanoparticles, effectively preventing the restacking of graphene during reduction. The superior glucose sensing performance of Pt/RGO/CNC modified glass carbon electrode (GCE) was achieved with a linear concentration range from 0.005 to 8.5 mM and a low detection limit of 2.1 μM. Moreover, the Pt/RGO/CNC/GCE showed remarkable sensitivity, selectivity, durability, and reproducibility. The obtained results indicate that the CNCs-based bioinorganic nanohybrids could be a promising electrode material in electrochemical biosensors.
Collapse
Affiliation(s)
- Lili Dong
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Suxia Ren
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Xiuqiang Zhang
- Henan Key Laboratory of Biomass Energy, Zhengzhou 450008, China
| | - Yantao Yang
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| | - Tingzhou Lei
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Palladium Supported on Bioinspired Materials as Catalysts for C–C Coupling Reactions. Catalysts 2023. [DOI: 10.3390/catal13010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In recent years, the immobilization of palladium nanoparticles on solid supports to prepare active and stable catalytic systems has been deeply investigated. Compared to inorganic materials, naturally occurring organic solids are inexpensive, available and abundant. Moreover, the surface of these solids is fully covered by chelating groups which can stabilize the metal nanoparticles. In the present review, we have focused our attention on natural biomaterials-supported metal catalysts applied to the formation of C–C bonds by Mizoroki–Heck, Suzuki–Miyaura and Sonogashira reactions. A systematic approach based on the nature of the organic matrix will be followed: (i) metal catalysts supported on cellulose; (ii) metal catalysts supported on starch; (iii) metal catalysts supported on pectin; (iv) metal catalysts supported on agarose; (v) metal catalysts supported on chitosan; (vi) metal catalysts supported on proteins and enzymes. We will emphasize the effective heterogeneity and recyclability of each catalyst, specifying which studies were carried out to evaluate these aspects.
Collapse
|
6
|
Marset X, Guillena G. Deep Eutectic Solvents as à-la-Carte Medium for Transition-Metal-Catalyzed Organic Processes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238445. [PMID: 36500536 PMCID: PMC9736881 DOI: 10.3390/molecules27238445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Our society is facing a tremendous challenge to become more sustainable in every sphere of life. Regarding the chemical industry, one of the most significant issues to be addressed is the use of volatile organic compounds (VOCs) as solvents because they are petrol-derived and most of them are toxic and flammable. Among the possible solutions, deep eutectic solvents (DESs) have emerged as sustainable alternatives to VOCs in organic catalyzed transformations and other fields. The advantages of these new reaction media are not only related to their more benign physical and chemical properties and, for most of them, their renewable sources but also due to the possibility of being recycled after their use, increasing the sustainability of the catalyzed process in which they are involved. However, their use as media in catalytic transformations introduces new challenges regarding the compatibility and activity of known catalysts. Therefore, designed catalysts and "à-la-carte" DESs systems have been developed to overcome this problem, to maximize the reaction outcomes and to allow the recyclability of the catalyst/media system. Over the last decade, the popularity of these solvents has steadily increased, with several examples of efficient metal-catalyzed organic transformations, showing the efficiency of the catalysts/DES system, compared to the related transformations carried out in VOCs. Additionally, due to the inherent properties of the DES, unknown transformations can be carried out using the appropriated catalyst/DES system. All these examples of sustainable catalytic processes are compiled in this review.
Collapse
Affiliation(s)
- Xavier Marset
- Correspondence: (X.M.); (G.G.); Tel.: +34-965903400 (G.G.)
| | | |
Collapse
|
7
|
Khodamorady M, Jafarzadeh M, Bahrami K. Design and Introduction of BNPs@SiO2(CH2)3-TAPC-O-(CH2)2NH2-Pd (0) as an Efficient Nano-catalyst for the Coupling Reactions and Removing of Organic Dyes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Efficiency of zero-dimensional and two-dimensional graphene architectural nanocomposites for organic transformations in the contemporary environment: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [PMCID: PMC9610332 DOI: 10.1007/s13738-022-02678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Graphene derivatives-based nanocatalyst finds increasing utilisation in the catalysis field for organic transformations. Researchers have been working on the development of graphene oxide, reduced graphene oxide, and graphene quantum dots with metal or metal oxide nanocomposites over the last few years. These materials exhibit excellent electrical, catalytic, optical, thermal, and magnetic properties. In particular, GO/rGO/GQDs composites assisted by metal or metal oxides have attracted broad attention for their possible applications in organic compound synthesis, drug delivery, sensors, devices, and the related areas of the environment. In this review, we have summarised GO/rGO/GQDs-metal or metal oxide composites using catalyst for organic conversions and synthesis of organic compounds in accordance with the discussion on the key problems and prospects for future study. Furthermore, there is a significant function for the catalytic efficiency of composites assisted by metal or metal oxide nanocatalyst which is categorised by graphene derivatives bases.
Collapse
|
9
|
Nanomagnetic Salamo-based-Pd(0) Complex: an efficient heterogeneous catalyst for Suzuki–Miyaura and Heck cross-coupling reactions in aqueous medium. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Xu Z, Xu J, Zhou Y, Huang Y, Li Y. Pd immobilized on EDTA-modified cellulose: synthesis, characterization, and catalytic application in inter- and intramolecular Heck reactions and Larock reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Kitanosono T, Lu F, Masuda K, Yamashita Y, Kobayashi S. Efficient Recycling of Catalyst‐Solvent Couples from Lewis Acid‐Catalyzed Asymmetric Reactions in Water. Angew Chem Int Ed Engl 2022; 61:e202202335. [DOI: 10.1002/anie.202202335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Fangqiu Lu
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Koichiro Masuda
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yasuhiro Yamashita
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shu Kobayashi
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
12
|
Niakan M, Masteri-Farahani M. An efficient clean and sustainable methodology for catalytic C-C coupling process over a Pd-free magnetically recoverable cobalt catalyst. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Bakhtiarian M, Khodaei MM. Synthesis of 2,3-dihydro-4(1 H) quinazolinones using a magnetic pectin-supported deep eutectic solvent. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Kitanosono T, Lu F, Masuda K, Yamashita Y, Kobayashi S. Efficient Recycling of Catalyst–Solvent Couples from Lewis Acid‐Catalyzed Asymmetric Reactions in Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taku Kitanosono
- The University of Tokyo: Tokyo Daigaku Department of Chemistry JAPAN
| | - Fangqiu Lu
- The University of Tokyo: Tokyo Daigaku Department of Chemistry JAPAN
| | - Koichiro Masuda
- The University of Tokyo: Tokyo Daigaku Department of Chemistry JAPAN
| | | | - Shu Kobayashi
- The University of Tokyo Department of Chemistry, School of Science 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo JAPAN
| |
Collapse
|
15
|
Niakan M, Masteri-Farahani M. Ultrafine and well-dispersed Pd-Ni bimetallic catalyst stabilized by dendrimer-grafted magnetic graphene oxide for selective reduction of toxic nitroarenes under mild conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127717. [PMID: 34799155 DOI: 10.1016/j.jhazmat.2021.127717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
A facile and efficient strategy is introduced for growing a dendrimer structure on the surface of magnetic graphene oxide by using thiol-ene click reaction. The as-synthesized dendrimer-grafted magnetic graphene oxide was used as a suitable support for bimetallic Pd-Ni nanoparticles. The prepared nanocomposite was utilized for the reduction of toxic nitroarenes to aminoarenes by using sodium borohydride in aqueous medium at room temperature. Various nitroarenes with functional groups like nitrile, halogen, carbonyl, hydroxyl, acid, and heterocycles were converted to their corresponding anilines with good to excellent yields. The enhanced performance of the catalyst could be attributed to the synergistic effect between Ni and Pd which causes the reaction to proceed more efficiently. Moreover, the catalyst could be readily isolated from the reaction mixture by utilizing an external magnet and reused till 5th cycles with marginal loss of activity.
Collapse
Affiliation(s)
- Mahsa Niakan
- Faculty of Chemistry, Kharazmi University, Tehran, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran
| | - Majid Masteri-Farahani
- Faculty of Chemistry, Kharazmi University, Tehran, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran.
| |
Collapse
|
16
|
Abstract
Despite providing interesting solutions to reduce the number of synthetic steps, to decrease energy consumption or to generate less waste, therefore contributing to a more sustainable way of producing important chemicals, the expansion of the use of homogeneous catalysis in industrial processes is hampered by several drawbacks. One of the most important is the difficulty to recycle the noble metals generating potential high costs and pollution of the synthesized products by metal traces detrimental to their applications. Supporting the metals on abundant and cheap biosourced polymers has recently appeared as an almost ideal solution: They are much easier to recover from the reaction medium and usually maintain high catalytic activity. The present bibliographical review focuses on the development of catalysts based on group 10 transition metals (nickel, palladium, platinum) supported on biopolymers obtained from wood, such as cellulose, hemicellulose, lignin, and their derivatives. The applications of these catalysts in organic synthesis or depollution are also addressed in this review with examples of C-C couplings, oxidation, or hydrogenation reactions.
Collapse
|
17
|
Mahanitipong U, Rutnakornpituk M. Palladium‐immobilized polymer‐coated magnetic nanocomposites as reusable catalysts for the reduction of 4‐nitrophenol. POLYM INT 2022. [DOI: 10.1002/pi.6375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Usana Mahanitipong
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science Naresuan University Phitsanulok 65000 Thailand
| | - Metha Rutnakornpituk
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science Naresuan University Phitsanulok 65000 Thailand
| |
Collapse
|
18
|
Shamsipur M, Mafakheri N, Babajani N. A Natural Deep Eutectic Solvent–based Ultrasound-Vortex-assisted Dispersive Liquid–Liquid Microextraction Method for Ligand-less Pre-concentration and Determination of Traces of Cadmium Ions in Water and Some Food Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int J Biol Macromol 2021; 192:771-819. [PMID: 34634337 DOI: 10.1016/j.ijbiomac.2021.09.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Heck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR. In recent decades, the application of biopolymers as natural and effective supports has received attention due to their being cost effective, abundance, and non-toxicity. In fact, recent studies demonstrated that biopolymer-based catalysts had high sorption capacities, chelating activities, versatility, and stability, which make them potentially applicable as green materials (supports) in HCR. These catalytic systems present high stability and recyclability after several cycles of reaction. This review aims at providing an overview of the current progresses made towards the application of various polysaccharide and gelatin-supported metal catalysts in HCR in recent years. Natural polymers such as starch, gum, pectin, chitin, chitosan, cellulose, alginate and gelatin have been used as natural supports for metal-based catalysts in HCR. Diverse aspects of the reactions, different methods of preparation and application of polysaccharide and gelatin-based catalysts and their reusability have been reviewed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Khatereh Pakzad
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran.
| | - Mohammad G Dekamin
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
20
|
Begum R, Farooqi ZH, Xiao J, Ahmed E, Sharif A, Irfan A. Crosslinked polymer encapsulated palladium nanoparticles for catalytic reduction and Suzuki reactions in aqueous medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Palladium Loaded Dendronized Polymer as Efficient Polymeric Sustainable Catalyst for Heck Coupling Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Niakan M, Karimi S, Masteri-Farahani M, Shekaari H. An efficient, cost-effective, and magnetically recoverable copper catalyst for O-arylation of phenols with aryl halides in choline chloride-based deep eutectic solvents. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Recent developments of supported and magnetic nanocatalysts for organic transformations: an up-to-date review. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01888-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Zainal-Abidin MH, Hayyan M, Wong WF. Hydrophobic deep eutectic solvents: Current progress and future directions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Hosseini MS, Masteri-Farahani M. Phenyl sulfonic acid functionalized graphene-based materials: Synthetic approaches and applications in organic reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Ghasemi K, Darroudi M, Rahimi M, Rouh H, Gupta AR, Cheng C, Amini A. Magnetic AgNPs/Fe 3O 4@chitosan/PVA nanocatalyst for fast one-pot green synthesis of propargylamine and triazole derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02354c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new green magnetic nanocatalyst was introduced for one-pot fast synthesis of propargylamine and triazole derivatives.
Collapse
Affiliation(s)
- Kousar Ghasemi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mahdieh Darroudi
- Department of Energy Science and Technology, Faculty of Science, Turkish-Germen University, Istanbul, Turkey
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Marjan Rahimi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hossein Rouh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Anju R. Gupta
- Department of Mechanical Engineering, Industrial and Manufacturing Engineering, The University of Toledo, Ohio, USA
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Abbas Amini
- Department of Mechanical Engineering, Australian College of Kuwait, Safat 13015, Kuwait
- Centre for Infrastructure Engineering, Western Sydney University, Kingswood Campus, Bld Z, Locked Bag 1797, Penrith, Penrith 2751, NSW, Australia
| |
Collapse
|
27
|
Karimi S, Shekaari H, Ahadzadeh I. Effect of some deep eutectic solvents based on choline chloride on thermodynamic properties of 5-hydroxymethylfurfural at T = (288.15 to 318.15) K. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|