1
|
Ren X, Cai S, Zhong Y, Tang L, Xiao M, Li S, Zhu C, Li D, Mou H, Fu X. Marine-Derived Fucose-Containing Carbohydrates: Review of Sources, Structure, and Beneficial Effects on Gastrointestinal Health. Foods 2024; 13:3460. [PMID: 39517244 PMCID: PMC11545675 DOI: 10.3390/foods13213460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Fucose, fucose-containing oligosaccharides, and fucose-containing polysaccharides have been widely applied in the fields of food and medicine, including applications in Helicobacter pylori eradication and renal function protection. Fucose-containing carbohydrates (FCCs) derived from marine organisms such as seaweed, invertebrates, microalgae, fungi, and bacteria have garnered growing attention due to their diverse bioactivities and potential therapeutic applications. Marine-derived FCCs characterized by high fucose residue content and extensive sulfate substitution, including fucoidan, fucosylated chondroitin sulfate, and fucose-rich microbial exopolysaccharides, have demonstrated significant potential in promoting gastrointestinal health. This review describes the unique structural features of FCCs and summarizes their health benefits, including regulation of gut microbiota, modulation of microbial metabolism, anti-adhesion activities against H. pylori and gut pathogens, protection against inflammatory injuries, and anti-tumor activities. Additionally, this review discusses the structural characteristics that influence the functional properties and the limitations related to the activity research and preparation processes of FCCs, providing a balanced perspective on the application potential and challenges of FCCs with specific structures for the regulation of gastrointestinal health and diseases.
Collapse
|
2
|
Huang XY, Ye XP, Hu YY, Tang ZX, Zhang T, Zhou H, Zhou T, Bai XL, Pi EX, Xie BH, Shi LE. Exopolysaccharides of Paenibacillus polymyxa: A review. Int J Biol Macromol 2024; 261:129663. [PMID: 38278396 DOI: 10.1016/j.ijbiomac.2024.129663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Paenibacillus polymyxa (P. polymyxa) is a member of the genus Paenibacillus, which is a rod-shaped, spore-forming gram-positive bacterium. P. polymyxa is a source of many metabolically active substances, including polypeptides, volatile organic compounds, phytohormone, hydrolytic enzymes, exopolysaccharide (EPS), etc. Due to the wide range of compounds that it produces, P. polymyxa has been extensively studied as a plant growth promoting bacterium which provides a direct benefit to plants through the improvement of N fixation from the atmosphere and enhancement of the solubilization of phosphorus and the uptake of iron in the soil, and phytohormones production. Among the metabolites from P. polymyxa, EPS exhibits many activities, for example, antioxidant, immunomodulating, anti-tumor and many others. EPS has various applications in food, agriculture, environmental protection. Particularly, in the field of sustainable agriculture, P. polymyxa EPS can be served as a biofilm to colonize microbes, and also can act as a nutrient sink on the roots of plants in the rhizosphere. Therefore, this paper would provide a comprehensive review of the advancements of diverse aspects of EPS from P. polymyxa, including the production, extraction, structure, biosynthesis, bioactivity and applications, etc. It would provide a direction for future research on P. polymyxa EPS.
Collapse
Affiliation(s)
- Xuan-Ya Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Pei Ye
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yan-Yu Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen-Xing Tang
- School of Culinary Art, Tourism College of Zhejiang, Hangzhou, Zhejiang 311231, China
| | - Tian Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hai Zhou
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ting Zhou
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xue-Lian Bai
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Er-Xu Pi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Bing-Hua Xie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lu-E Shi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
3
|
Wang Y, Zhang X, Tian X, Wang Y, Xing X, Song S. Research progress on the functions, preparation and detection methods of l-fucose. Food Chem 2024; 433:137393. [PMID: 37672945 DOI: 10.1016/j.foodchem.2023.137393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
l-fucose is a six-carbon sugar that has potential applications in many fields. It exerts antitumor effects and could relieve intestinal disease. It exhibits potential as an emulsifier in the food industry. It is also used as a functional food and in anti-aging skincare products. However, at present, it is not possible to prepare high-purity l-fucose on a large scale, and its preparation needs further development. This review summarizes the preparation methods of l-fucose including chemical synthesis, enzymatic synthesis, microbial fermentation, and separation and purification from algae. The detection methods of l-fucose are also introduced in detail, such as l-fucose-specific lectin, detection l-fucose dehydrogenase, cysteine-sulfuric acid method, high-performance liquid chromatography, gas chromatography, and biosensors. In this review, the properties and pharmacological effects of l-fucose; preparation methods, and the commonly used detection methods of l-fucose are reviewed to serve as a reference material.
Collapse
Affiliation(s)
- Yan Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiao Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiao Tian
- Marine College, Shandong University, Weihai 264209, China
| | - Yuan Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiang Xing
- Marine College, Shandong University, Weihai 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
4
|
Tang H, Zha Z, Tan Y, Li Y, Jiao Y, Yang B, Xiong Q, Yin H, Wang H. Extraction and characterization of polysaccharide from fermented mycelia of Coriolus versicolor and its efficacy for treating nonalcoholic fatty liver disease. Int J Biol Macromol 2023; 248:125951. [PMID: 37499724 DOI: 10.1016/j.ijbiomac.2023.125951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Coriolus versicolor, a popular traditional Chinese medicinal herb, is widely used in China to treat spleen and liver diseases; however, the beneficial effects of C. versicolor polysaccharides (CVPs) on nonalcoholic fatty liver disease (NAFLD) remain elusive. Herein we isolated and purified a novel CVP (molecular weight, 17,478 Da) from fermented mycelium powder. This CVP was composed of mannose, galacturonic acid, glucose, galactose, xylose, and fucose at a molar ratio of 22:1:8:15:10:3. Methylation, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses indicated that the CVP backbone consisted of →1)-β-D-Man-(6,4→1)-α-D-Gal-(3→1)-α-D-Man-(4→1)-α-D-Gal-(6→, with branches of →1)-α-D-Glc-(6→1)-α-D-Man-(4,3→1)-β-D-Xyl-(2→1)-β-D-Glc on the O-6 position of →1)-β-D-Man-(6,4→ of the main chain. The secondary branches linked to the O-4 position of →1)-α-D-Man-(4,3→ with the chain of →1)-α-D-Fuc-(4→1)-α-D-Man. Further, CVP treatment alleviated the symptoms of NAFLD in an HFD-induced mice model. CVP altered gut microbiota, predominantly suppressing microbes associated with bile acids both in the serum and cecal contents. In vitro data showed that CVP reduced HFD-induced hyperlipidemia via farnesoid X receptor. Our results improve our understanding of the mechanisms underlying the cholesterol- and lipid-lowering effects of CVP and indicate that CVP is a promising candidate for NAFLD therapy.
Collapse
Affiliation(s)
- Huiling Tang
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Zhengqi Zha
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yanfang Tan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuan Li
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Yuzhi Jiao
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Baowei Yang
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
5
|
Xiao M, Ren X, Cheng J, Fu X, Li R, Zhu C, Kong Q, Mou H. Structural characterization of a novel fucosylated trisaccharide prepared from bacterial exopolysaccharides and evaluation of its prebiotic activity. Food Chem 2023; 420:136144. [PMID: 37060669 DOI: 10.1016/j.foodchem.2023.136144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Fucosylated oligosaccharides have promising prospects in various fields. In this study, a fucosylated trisaccharide (GFG) was separated from the acidolysis products of exopolysaccharides from Clavibacter michiganensis M1. Structural characterization demonstrated that GFG consists of glucose, galactose, and fucose, with a molecular weight of 488 Da. Nuclear magnetic resonance analysis showed that it has a different structure than that of 2'-fucosyllactose (2'-FL), even though they have the same monosaccharide composition. In vitro prebiotic experiments were conducted to evaluate the differences in the utilization of three selected carbohydrates by fourteen bacterial strains. In comparison with 2'-FL, GFG could be utilized by more beneficial bacteria, leading to generate more short-chain fatty acids. Moreover, GFG could not promote the proliferation of Escherichia coli. This work describes a novel fucosylated oligosaccharide and its preparation method, and the obtained trisaccharide may serve as a promising candidate for fucosylated human milk oligosaccharides.
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Jiaying Cheng
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Rong Li
- Qingdao Women and Children Hospital, Qingdao 266003, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
6
|
Liang Z, Yin Z, Liu X, Ma C, Wang J, Zhang Y, Kang W. A glucomannogalactan from Pleurotus geesteranus: Structural characterization, chain conformation and immunological effect. Carbohydr Polym 2022; 287:119346. [DOI: 10.1016/j.carbpol.2022.119346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
|
7
|
Xiao M, Ren X, Cui J, Li R, Liu Z, Zhu L, Kong Q, Fu X, Mou H. A novel glucofucobiose with potential prebiotic activity prepared from the exopolysaccharides of Clavibacter michiganensis M1. Food Chem 2022; 377:132001. [PMID: 34999464 DOI: 10.1016/j.foodchem.2021.132001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/04/2022]
Abstract
Fucose and fucosylated oligosaccharides have important applications in various industries owing to their prebiotic, anti-inflammatory, anticoagulant, and antiviral activities. Here, we aimed to obtain fucosylated oligosaccharides using the acidolysis method to depolymerize exopolysaccharides extracted from Clavibacter michiganensis M1. Based on structural analysis, the prepared glucofucobiose was found to consist of d-glucose and l-fucose, with a molecular weight of 326 Da and a structure of d-Glcp-β-(1→4)-l-Fucp. The prebiotic activity of glucofucobiose was compared with that of 2'-fucosyllactose (2'-FL), the most abundant oligosaccharide in human milk. According to the results, glucofucobiose could significantly promote the proliferation of six probiotic strains, and short-chain fatty acid production of five probiotic strains on glucofucobiose was substantially higher than that on 2'-FL at 48 h of fermentation. Overall, this study proposed a new technology for obtaining fucosylated oligosaccharides. The prepared glucofucobiose was found to exhibit potential prebiotic activity and should be further assessed.
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Jinzheng Cui
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Rong Li
- Qingdao Women and Children Hospital, Qingdao 266003, Shandong, People's Republic of China.
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Lin Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China; Weihai Deepsea Biotechnology Co., Ltd, Weihai 264300, Shandong, People's Republic of China.
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Xiao M, Ren X, Yu Y, Gao W, Zhu C, Sun H, Kong Q, Fu X, Mou H. Fucose-containing bacterial exopolysaccharides: Sources, biological activities, and food applications. Food Chem X 2022; 13:100233. [PMID: 35498987 PMCID: PMC9039932 DOI: 10.1016/j.fochx.2022.100233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Bacterial exopolysaccharides are high molecular weight polysaccharides that are secreted by a wide range of bacteria, with diverse structures and easy preparation. Fucose, fucose-containing oligosaccharides (FCOs), and fucose-containing polysaccharides (FCPs) have important applications in the food and medicine fields, including applications in products for removing Helicobacter pylori and infant formula powder. Fucose-containing bacterial exopolysaccharide (FcEPS) is a prospective source of fucose, FCOs, and FCPs. This review systematically summarizes the common sources and applications of FCPs and FCOs and the bacterial strains capable of producing FcEPS reported in recent years. The repeated-unit structures, synthesis pathways, and factors affecting the production of FcEPS are reviewed, as well as the degradation methods of FcEPS for preparing FCOs. Finally, the bioactivities of FcEPS, including anti-oxidant, prebiotic, anti-cancer, anti-inflammatory, anti-viral, and anti-microbial activities, are discussed and may serve as a reference strategy for further applications of FcEPS in the functional food and medicine industries.
Collapse
Key Words
- 2′-FL, 2′-fucosyllactose
- 3-FL, 3-fucosyllactose
- ABTS, 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonate
- Bacterial exopolysaccharides
- Bioactivity
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- EPS, exopolysaccharides
- FCOs, fucose-containing oligosaccharides
- FCPs, fucose-containing polysaccharides
- FcEPS, fucose-containing EPS
- Food application
- Fucose
- HMOs, human milk oligosaccharides
- MAPK, mitogen-activated protein kinase
- PBMCs, peripheral blood mononuclear cells
- ROS, reactive oxygen species
- SCFAs, short-chain fatty acids
- Structure
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Wei Gao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi Province, People's Republic of China
- Corresponding authors.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
- Corresponding authors.
| |
Collapse
|
9
|
Yin ZH, Liu XP, Wang JM, Xi XF, Zhang Y, Zhao RL, Kang WY. Structural Characterization and Anticoagulant Activity of a 3-O-Methylated Heteroglycan From Fruiting Bodies of Pleurotus placentodes. Front Chem 2022; 10:825127. [PMID: 35155369 PMCID: PMC8829048 DOI: 10.3389/fchem.2022.825127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pleurotus placentodes, a fungus, belongs to the Pleurotaceae family. The aim of the present study was to characterize the structure of a novel polysaccharide from fruiting bodies of P. placentodes (PPp-W) and evaluate its anticoagulant activity in vitro. The high-performance liquid chromatography and GC–MS analysis indicated that PPp-W with a molecular weight of 27.4 kDa was mainly composed of mannose (17.56%), glucose (6.37%), galactose (44.89%), and fucose (1.22%) with a certain amount of 3-O-methyled galactose. SEM, XRD, and AFM combined with Congo red test revealed that PPp-W was an irregular curly sheet with triple-helix conformation. The FT-IR, methylation, and nuclear magnetic resonance analysis indicated that PPp-W contained→6)-α-D-Galp-(1→, →6)-3-O-Me-α-D-Galp-(1→and →2, 6)-α-D-Galp-(1→ as main chain, partially substituted at O-2 and O-6 by non-reducing ends of β-D-Manp-(1→ and β-L-Fucp-(1→ with a small amount of α-1,3-linked-Glcp in backbone. PPp-W could significantly prolong APTT (12.9 ± 0.42 s, p < 0.001) and thrombin time (39.9 ± 0.28 s, p < 0.01) compared with the control group (11.45 ± 0.071 s and 38.05 ± 0.21 s), which showed that PPp-W had anticoagulant activity. These studies suggested that PPp-W was a 3-O-methylated heteroglycan and might be suitable for functional foods and natural drugs as an anticoagulant ingredient, which provided a basis for the application of polysaccharides from P. placentodes.
Collapse
Affiliation(s)
- Zhen-Hua Yin
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Xiao-Peng Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Jin-Mei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Xue-Feng Xi
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- College of Physical Education, Henan University, Kaifeng, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Shijiazhuang, China
- *Correspondence: Yan Zhang, ; Rui-Lin Zhao, ; Wen-Yi Kang,
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yan Zhang, ; Rui-Lin Zhao, ; Wen-Yi Kang,
| | - Wen-Yi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- *Correspondence: Yan Zhang, ; Rui-Lin Zhao, ; Wen-Yi Kang,
| |
Collapse
|
10
|
Genome sequence analysis of Cronobacter phage PF-CE2 and proposal of a new species in the genus Pseudotevenvirus. Arch Virol 2021; 166:3467-3472. [PMID: 34601635 DOI: 10.1007/s00705-021-05255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
The genome of a Cronobacter sakazakii M1 phage named PF-CE2 was characterized in this work, and a new species named "Cronobacter virus PF-CE2", in the genus Pseudotevenvirus of the subfamily Tevenvirinae of the family Myoviridae is proposed. The Gp190 gene of phage PF-CE2 is predicted to encode a bacteriophage-borne glycanase that is capable of degrading fucose-containing exopolysaccharides produced by C. sakazakii M1. Furthermore, we propose changing the taxonomic status of eight additional phages based on nucleotide sequence comparisons. This work provides a theoretical basis for subsequent heterologous expression of the phage PF-CE2 glycanase and provides an important reference for the preservation and sharing of these phages.
Collapse
|