1
|
Li Y, Wei Q, Su J, Zhang H, Fan Z, Ding Z, Wen M, Liu M, Zhao Y. Encapsulation of astaxanthin in OSA-starch based amorphous solid dispersions with HPMCAS-HF/Soluplus® as effective recrystallization inhibitor. Int J Biol Macromol 2024; 279:135421. [PMID: 39349321 DOI: 10.1016/j.ijbiomac.2024.135421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024]
Abstract
In this study, the interaction among multifunctional excipients, including polysaccharides, cellulose derivatives, and surfactants, was particularly investigated, together with its impact on the physicochemical properties of astaxanthin amorphous solid dispersions (ASTX ASDs). It was indicated that Span 20 could rapidly form hemimicelles or aggregates in the presence of hypromellose acetate succinate HF (HPMCAS-HF, HF) or Soluplus®, while octenyl succinic anhydride modified starch (OSA-starch) efficiently assisted in the coalescence inhibition of drug-excipients aggregates, which was jointly beneficial to the recrystallization inhibition of amorphous ASTX. ASTX ASDs were further prepared with OSA-starch, HPMCAS-HF/Soluplus®, and Span 20 as the wall materials. DSC, SEM, and XRD confirmed that crystalline ASTX had transformed to amorphous state in the ASDs, while FT-IR spectra provided evidence suggesting the existence of hydrogen bonds and hydrophobic interaction between ASTX and the excipients. The dissolution of ASTX ASDs in different media revealed significant promotion, while the pharmacokinetic results further demonstrated the oral bioavailability of ASTX ASDs enhanced remarkably, exhibiting 2.75-fold (SD1) and 1.87-fold (SD2) increase, respectively, compared to ASTX bulk powder. In summary, the cellulose derivatives-surfactant interaction had great impact on the physicochemical properties of ASTX ASDs, and their combinations exhibited great potential for delivering the hydrophobic bioactive compounds efficiently.
Collapse
Affiliation(s)
- Yinglan Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qipeng Wei
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jianshuo Su
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Huaizhen Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhiping Fan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| |
Collapse
|
2
|
Wu Z, Li H, Li S, Chen G, Tang X, Liu S, Wang Y. Molecular mechanism underlying coencapsulating chrysophanol and hesperidin in octenylsuccinated β-glucan aggregates for improving their corelease and bioaccessibility. Int J Biol Macromol 2024; 276:133902. [PMID: 39029835 DOI: 10.1016/j.ijbiomac.2024.133902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Chrysophanol and hesperidin are natural nutraceuticals that exhibit synergistic bioactivities, but their hydrophobicity limits their applications, and it is unclear whether coencapsulation can improve their solubility and release behaviors. The objective of this work was to coencapsulate chrysophanol and hesperidin by octenylsuccinated β-glucan aggregates (OSβG-Agg) and to reveal how coencapsulation improves their release and bioaccessibility. Mechanisms underlying the hypothesis of beneficial effects in coloading, corelease and bioaccessibility were revealed. The solubilization of OSβG-Agg was due to hydrogen-bonding among β-glucan moieties of OSβG and hydroxyl groups of chrysophanol and hesperidin and hydrophobic interactions among octenyl chains of OSβG and hydrophobic moieties of chrysophanol and hesperidin. Structural analyses confirmed the hypothesis that chrysophanol molecules were nearly embedded deeper into the interior of hydrophobic domains, and most of hesperidin molecules were incorporated into the exterior of the hydrophobic domains of OSβG-Agg due to the strength of these interactions, but they interacted in OSβG-Agg with a dense and compact structure rather than existing in isolation. The combined effects delayed their release and enhanced their bioaccessibility because of dynamic equilibrium between the favorable interactions and unfavorable structural erosion and relaxation of OSβG-Agg. Overall, OSβG-Agg is effective at codelivering hydrophobic phenolics for functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Zhen Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China.
| | - Hong Li
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Gang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Simei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China.
| |
Collapse
|
3
|
Wang Z, Cheng X, Meng F, Guo H, Liu Z, Wang H, Xu J, Jin H, Jiang L. Wheat gliadin hydrolysates based nano-micelles for hydrophobic naringin: Structure characterization, interaction, and in vivo digestion. Food Chem X 2024; 21:101136. [PMID: 38298357 PMCID: PMC10828641 DOI: 10.1016/j.fochx.2024.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, enzymatic hydrolysis was used to fabricate wheat gliadin hydrolysates (WGHs) for the encapsulation and protection of naringin. The exposure of hydrophilic amino acids decreased the critical micelle concentration (from 0.53 ± 0.02 mg/mL to 0.35 ± 0.03 mg/mL) and improved solubility, which provided amphiphilic conditions for the delivery of naringin. The hydrolysates with a degree of hydrolysis (DH) of 9 % had the strongest binding affinity with naringin, and exhibited the smallest particle size (113.7 ± 1.1 nm) and the highest encapsulation rate (83.2 ± 1.3 %). The storage, heat and photochemical stability of naringin were improved via the encapsulation of micelles. Furthermore, the micelles made up of hydrolysates with a DH of 12 % significantly enhanced the bioavailability of naringin (from 19.4 ± 4.3 % to 46.8 ± 1.4 %). Our experiment provides theoretical support for the utilization of delivery systems based on water-insoluble proteins.
Collapse
Affiliation(s)
- Zhiyong Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoyi Cheng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fanda Meng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotong Guo
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhengqin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hua Jin
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
4
|
Liu XY, He TS, Wang CC, Xu BC, Feng R, Zhang B, Tao H. Modulation of pea protein isolate nanoparticles by interaction with OSA-corn starch: Enhancing the stability of the constructed Pickering emulsions. Food Chem 2024; 437:137766. [PMID: 37866346 DOI: 10.1016/j.foodchem.2023.137766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
The impact of particle concentration (0.5-2.5%) on the stability of Pickering emulsions was investigated in this work. Pickering emulsion was prepared using pea protein isolate (PPI)/octenyl succinic anhydrate corn starch (OSA-CS) composite nanoparticles (PPI/OSA-CS) as stabilizers. PPI/OSA-CS was prepared with pH adjustment and ultrasonic treatment, and the particle size was 100.05 ± 0.46 nm. The formation of PPI/OSA-CS through hydrophobic interaction and hydrogen bond was confirmed by Fourier transform infrared spectroscopy, intrinsic fluorescence spectroscopy and dissociation analysis. The results indicated that the emulsion stabilized with composite nanoparticles at 1.5% particle concentration had smaller particle size and better stability than at other concentrations. This could be attributed to the presence of sufficient composite nanoparticles wrapped around the surface of oil droplets. At high temperature (100 °C) and high ionic strength (500 mM), the emulsion remained stable. These results provide a potential method for preparing a novel and stable Pickering emulsion, which could have important applications in various fields.
Collapse
Affiliation(s)
- Xin-Yue Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ting-Shi He
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Chen-Chen Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
5
|
Li M, Liu Y, Liu Y, Lin J, Ding L, Wu S, Gong J. Fabrication of targeted and pH responsive lysozyme-hyaluronan nanoparticles for 5-fluorouracil and curcumin co-delivery in colorectal cancer therapy. Int J Biol Macromol 2024; 254:127836. [PMID: 37931859 DOI: 10.1016/j.ijbiomac.2023.127836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Green nanotechnology is considered a promising method to construct functional materials with significant anticancer activity, while overcoming the shortcomings of traditional synthesis process complexity and high organic solvents consumption. Thus, in this study, we report for the first time the rational design and green synthesis of functionalized 5-fluorouracil and curcumin co-loaded lysozyme-hyaluronan composite colloidal nanoparticles (5-Fu/Cur@LHNPs) for better targeted colorectal cancer therapy with minimized side effects. The functionalized 5-Fu/Cur@LHNPs exhibit stabilized particle size (126.1 nm) with excellent homogeneity (PDI = 0.1), favorable colloidal stabilities, and excellent re-dispersibility. In vitro cell experiments illustrate that the cellular uptake of 5-Fu/Cur@LHNPs was significantly improved and further promoted a higher apoptosis ratio of HCT-116 cells. Compared with the control group, the 5-Fu/Cur@LHNPs formulation group achieved effective inhibition (60.1 %) of colorectal tumor growth. The alcohol-free self-assembly method to construct 5-Fu/Cur@LHNPs is simple and safe for a translational chemotherapy drug, also to promote more robust delivery systems for treating colorectal cancer.
Collapse
Affiliation(s)
- Maolin Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Yanbo Liu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jiawei Lin
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China.
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China
| |
Collapse
|
6
|
Li Y, Xu J, Guan Q, Zhang H, Ding Z, Wang Q, Wang Z, Han J, Liu M, Zhao Y. Impact of hypromellose acetate succinate and Soluplus® on the performance of β-carotene solid dispersions with the aid of sorbitan monolaurate: In vitro-in vivo comparative assessment. Int J Biol Macromol 2023; 253:126639. [PMID: 37657570 DOI: 10.1016/j.ijbiomac.2023.126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Solid dispersions (SDs) possess the potential to enhance the bioavailability of insoluble active pharmaceutical ingredients (APIs) by effectively converting them into amorphous state. However, SDs have a tendency to recrystallize unless appropriate excipients are employed. The objective of this study was to evaluate the ability of hypromellose acetate succinate HF (HPMCAS-HF) and Soluplus® to inhibit the recrystallization of β-carotene and improve its in vivo bioavailability through the fabrication of ternary β-carotene solid dispersions (SDs) with the aid of specific surfactant. Due to rapid micellization, the dissolution profiles of β-carotene SDs based on HPMCAS-HF/Span 20 (5:5, w/w) or Soluplus®/Span 20 (6:4, w/w) combinations exhibited significant improvement, which were almost 7-10 times higher than β-carotene bulk powder. DSC and PXRD analysis indicated a notable reduction in the crystallinity degree of β-carotene within the SDs. The stability study demonstrated a half-life of β-carotene in the SDs exceeding 30 days. Additionally, the in vivo pharmacokinetics analysis confirmed that the cellulose derivatives/surfactant combinations significantly enhanced the bioavailability of β-carotene by 1.37-fold and 2.3-fold, respectively. Notably, the HPMCAS-HF/Span 20 combination exhibited superior performance. Consequently, the HPMCAS-HF/Span 20 combination held potential for the advancement of an effective drug delivery system for β-carotene.
Collapse
Affiliation(s)
- Yinglan Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jie Xu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qingran Guan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Huaizhen Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| |
Collapse
|
7
|
Li XL, Liu WJ, Xu BC, Zhang B, Wang W, Su DL. OSA-linear dextrin enhances the compactness of pea protein isolate nanoparticles: Increase of high internal phase emulsions stability. Food Chem 2023; 404:134590. [DOI: 10.1016/j.foodchem.2022.134590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
8
|
Effects of the molecular weight of hyaluronan on the conformation and release kinetics of self-assembled 5-fluorouracil-loaded lysozyme-hyaluronan colloidal nanoparticles. Int J Biol Macromol 2022; 223:87-99. [PMID: 36347364 DOI: 10.1016/j.ijbiomac.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Lysozyme (LYS) and hyaluronan with low (HA1: 3 kDa), medium (HA2: 120 kDa), and high (HA3: 1200 kDa) molecular weights were used to fabricate lysozyme-hyaluronan colloidal nanoparticles using a green self-assembly method. Fourier transform infrared spectroscopy indicated that hydrogen bonding, hydrophobic and electrostatic interactions promoted the formation of the colloidal nanoparticles. The hydrophobic area of prepared colloidal nanoparticles was quantified using a pyrene fluorescent probe, and the results showed that the LYS-HA3 nanoparticles had the strongest hydrophobic capacity. Furthermore, 5-fluorouracil (5-Fu) was used to evaluate encapsulation performance, demonstrating that the LYS-HA3 nanoparticles had the highest encapsulation ability (>90 %). All prepared 5-Fu-loaded lysozyme-hyaluronan (5-Fu@LYS-HA) colloidal nanoparticles exhibited excellent long-term storage stability at 4 °C for 60 days. Cellular uptake and in vitro release results indicated that the LYS-HA2 nanoparticles exhibited the highest cellular uptake efficiency, and the LYS-HA3 nanoparticles had the best slow-release effect, while the release process was mainly controlled by the combination of Fickian diffusion and structural relaxation, respectively. This study demonstrates the influence of molecular weight on the conformational and structural properties of colloidal nanoparticles, which has implications for the design of insoluble drug self-assembly systems.
Collapse
|
9
|
Recent advances in oral delivery of bioactive molecules: Focus on prebiotic carbohydrates as vehicle matrices. Carbohydr Polym 2022; 298:120074. [DOI: 10.1016/j.carbpol.2022.120074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
|
10
|
Jalali-Jivan M, Rostamabadi H, Assadpour E, Tomas M, Capanoglu E, Alizadeh-Sani M, Kharazmi MS, Jafari SM. Recent progresses in the delivery of β-carotene: From nano/microencapsulation to bioaccessibility. Adv Colloid Interface Sci 2022; 307:102750. [PMID: 35987014 DOI: 10.1016/j.cis.2022.102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Beta-carotene (BC) as an efficient pro-vitamin is effective in improving vision, immune system and cognitive function as well as preventing coronary diseases and cancer. However, besides its poor chemical stability, the high lipophilic nature of BC reduces its dispersibility and consequently bioavailability which limits its application into food, pharmaceutical and nutraceuticals. Different carriers with vesicular or particulate structures have been studied and utilized for promoting BC solubility, dispersibility, and protection against diverse operational or environmental stresses and also controlling BC release and subsequent bioaccessibility. The current study, therefore reviews different micro/nanocarriers reported on BC encapsulation with special focusing on its bioavailability. Liposomal structures have been successfully used for enhancing BC stability and bioavailability. Besides, emulsion-based carriers including Pickering emulsions, nanoemulsions and microemulsions have been widely evaluated for BC encapsulation and protection. In addition, lipid-based nanoparticles and nanostructural carriers have also been applied successfully for this context. Moreover, gel structures including emulgels, hydrogels and oleogels are studied in some researches. Most of these delivery systems led to higher hydro-solubility and dispersibility of BC which consequently increased its bioavailability; thereupon could promote its application into food, cosmetic and nutraceutical products. However, for remarkable incorporation of BC and other bioactive compounds into edible products, the safety and toxicological aspects of these delivery system especially those designed in nano scale should be addressed in the further researches.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Halkali, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
11
|
Encapsulation of β-carotene in high internal phase Pickering emulsions stabilized by soy protein isolate – epigallocatechin-3-gallate covalent composite microgel particles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
13
|
Li XL, Liu WJ, Xu BC, Zhang B. Simple method for fabrication of high internal phase emulsions solely using novel pea protein isolate nanoparticles: Stability of ionic strength and temperature. Food Chem 2021; 370:130899. [PMID: 34509149 DOI: 10.1016/j.foodchem.2021.130899] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023]
Abstract
The oil-in-water high internal phase emulsions (HIPEs) could be stabilized by pea protein isolate nanoparticles (PPINs) induced by potassium metabisulfite (K2S2O5). Confocal laser scanning microscope proved that PPINs were attached on the oil-water interface, indicating characteristic of Pickering HIPEs. The HIPEs stabilized by PPINs of higher concentration had smaller droplet size, better storage and centrifugal stability than that of PPINs of low concentration because there were enough particles to constitute the thick interface film. The storage modulus was higher than loss modulus indicating that HIPEs exhibited gel-like structure. At different temperatures and ionic strengths, HIPEs exhibited flocculation but still maintained a stable gel-like structure. The strain curve of HIPEs showed Type III nonlinear behavior due to the flocculation of emulsion droplets. HIPEs stabilized by PPINs might be a potential alternative to partially hydrogenated oils to reduce intake of trans fatty acids.
Collapse
Affiliation(s)
- Xiao-Long Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Wen-Jie Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
14
|
Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Comunian TA, Drusch S, Brodkorb A. Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:6485-6504. [PMID: 33775182 DOI: 10.1080/10408398.2021.1902262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food researchers are currently showing a growing interest in in vitro digestibility studies due to their importance for obtaining food products with health benefits and ensuring a balanced nutrient intake. Various bioactive food compounds are sensitive to the digestion process, which results in a lower bioavailability in the gut. The main objective of structured food delivery systems is to promote the controlled release of these compounds at the desired time/place, in addition to protecting them during digestion processes. This review provides an overview of the influence of structured delivery systems on the in vitro digestive behavior. The main delivery systems are summarized, the pros and cons of different structures are outlined, and examples of several studies that optimized the use of these structured systems are provided. In addition, we have reviewed the use of plant-based systems, which have been of interest to food researchers and the food industry because of their health benefits, improved sustainability as well as being an alternative for vegetarian, vegan and consumers suffering from food allergies. In this context, the review provides new insights and comprehensive knowledge regarding the influence of plant-based structured systems on the digestibility of encapsulated compounds and proteins/polysaccharides used in the encapsulation process.
Collapse
Affiliation(s)
- Talita A Comunian
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|