1
|
Zhong L, Peng K, Sun Y, Zhou J, Xiao N, Wang H, Zhang X, Cheng Z. Chitosan quaternary ammonium salt-oxidized sodium alginate-glycerol-calcium ion biobased self-healing hydrogels with excellent spontaneous repair performance. RSC Adv 2024; 14:31954-31965. [PMID: 39380645 PMCID: PMC11460592 DOI: 10.1039/d4ra05382f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Self-healing hydrogels have attracted wide attention because of their potential applications in various fields. However, the complex processes, environmental requirements, and insufficient functionality limit their practical application. Herein, we synthesized a chitosan quaternary ammonium salt-oxidized sodium alginate-glycerol-calcium ion (HACC-OSA-Gly-Ca2+) biobased hydrogel with a multi-network structure that exhibits excellent self-healing abilities. This was achieved by utilizing reversible dynamic imine bonding, electrostatic interactions, Ca2+ ions as crosslinking points, and hydrogen bonding. The oxidation of sodium alginate (SA) with sodium periodate was carried out to obtain oxidized sodium alginate (OSA) with varying oxidation degrees. The resulting OSAs were then introduced into a glycerol-water solvent system containing chitosan quaternary ammonium salt (HACC) and calcium chloride, and this reaction successfully prepared the biobased eco-friendly self-healing hydrogel. The impacts of the oxidation degree (OD) of OSA on the microscopic morphology, mechanical properties, viscoelastic properties, swelling properties, and self-healing properties of the corresponding synthetic hydrogels were investigated. The outcomes indicated that the optimal HACC-OSA-Gly-Ca2+ hydrogel possessed good mechanical properties, with a tensile stress of 0.0132 MPa and elongation at break of 551.38%. Furthermore, the multiple bond interactions led to a high self-healing ratio (100%), with an elongation at break of about 614.29%, and excellent adhesion ability (average peel strength of 6.38 kN m-1) on various substrates. Additionally, the composite hydrogels exhibited excellent water retention, thermal stability, and resilience, making them promising for various potential applications. Moreover, the properties of the composite hydrogels could be facilely and finely tuned by varying the oxidation degree of OSA and ratio of each component. Thus, the presented strategy could enrich the construction as well as application of biopolymer-based self-healing hydrogels.
Collapse
Affiliation(s)
- Le Zhong
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- College of Life Science and Technology, Huazhong Agricultural University Wuhan CN 430070 China
| | - Keli Peng
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Yunqian Sun
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Jinxian Zhou
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Naiyu Xiao
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Honglei Wang
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Xueqin Zhang
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Zheng Cheng
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou CN 510640 China
| |
Collapse
|
2
|
Qiu YL, Li Y, Zhang GL, Hao H, Hou HM, Bi J. Quaternary-ammonium chitosan, a promising packaging material in the food industry. Carbohydr Polym 2024; 323:121384. [PMID: 37940243 DOI: 10.1016/j.carbpol.2023.121384] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 11/10/2023]
Abstract
Quaternary-ammonium chitosan (QAC) is a polysaccharide with good water solubility, bacteriostasis, and biocompatibility. QAC is obtained by methylating or grafting the quaternary-ammonium group of chitosan and is an important compound in the food industry. Various QAC-based complexes have been prepared using reversible intermolecular interactions, such as electrostatic interactions, hydrogen bonding, metal coordination, host-guest interactions, and covalent bonding interactions consisting of Schiff base bonding and dynamic chemical bond cross-linking. In the food industry, QAC is often used as a substrate in film or coating for food preservation and as a carrier for active substances to improve the encapsulation efficiency and storage stability of functional food ingredients. In this review, we have assimilated the latest information on QAC to facilitate further discussions and future research. Advancement in research on QAC would contribute toward technology acceleration and its increased contribution to the field of food technology.
Collapse
Affiliation(s)
- Yu-Long Qiu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Yixi Li
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Gong-Liang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hongshun Hao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hong-Man Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| |
Collapse
|
3
|
Liu Y, Tian C, Zhang C, Liu Z, Li J, Li Y, Zhang Q, Ma S, Jiao D, Han X, Zhao Y. "One-stop" synergistic strategy for hepatocellular carcinoma postoperative recurrence. Mater Today Bio 2023; 22:100746. [PMID: 37564266 PMCID: PMC10410525 DOI: 10.1016/j.mtbio.2023.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Residual tumor recurrence after surgical resection of hepatocellular carcinoma (HCC) remains a considerable challenge that imperils the prognosis of patients. Notably, intraoperative bleeding and postoperative infection are potential risk factors for tumor recurrence. However, the biomaterial strategy for the above problems has rarely been reported. Herein, a series of cryogels (coded as SQ-n) based on sodium alginate (SA) and quaternized chitosan (QC) were synthesized and selected for optimal ratios. The in vitro assays showed that SQ-50 possessed superior hemostasis, excellent antibacterial property, and great cytocompatibility. Subsequently, SQAP was constructed by loading black phosphorus nanosheets (BPNSs) and anlotinib hydrochloride (AL3818) based on SQ-50. Physicochemical experiments confirmed that near-infrared (NIR)-assisted SQAP could control the release of AL3818 in photothermal response, significantly inhibiting the proliferation and survival of HUVECs and H22 cells. Furthermore, in vivo studies indicated that the NIR-assisted SQAP prevented local recurrence of ectopic HCC after surgical resection, achieved through the synergistic effect of mPTT and molecular targeted therapy. Thus, the multifunctional SQAP provides a "one-stop" synergistic strategy for HCC postoperative recurrence, showing great potential for clinical application.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Chuan Tian
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Department of Interventional Medical Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Shandong, 266000, Qingdao, PR China
| | - Chengzhi Zhang
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zaoqu Liu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Jing Li
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yahua Li
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Quanhui Zhang
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, PR China
| | - Dechao Jiao
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xinwei Han
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yanan Zhao
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| |
Collapse
|
4
|
Yu G, Niu C, Liu J, Wu J, Jin Z, Wang Y, Zhao K. Preparation and Properties of Self-Cross-Linking Hydrogels Based on Chitosan Derivatives and Oxidized Sodium Alginate. ACS OMEGA 2023; 8:19752-19766. [PMID: 37305255 PMCID: PMC10249032 DOI: 10.1021/acsomega.3c01401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
A self-cross-linking and biocompatible hydrogel has wide application potential in the field of tissue engineering. In this work, an easily available, biodegradable, and resilient hydrogel was prepared using a self-cross-linking method. This hydrogel was composed of N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and oxidized sodium alginate (OSA). A stable and reversible cross-linking network was formed by the Schiff base self-cross-linked and hydrogen bonding. The addition of a shielding agent (NaCl) may weaken the intense electrostatic effect between HACC and OSA and solve the problem of flocculation caused by the rapid formation of ionic bonds, which provided an extended time for the Schiff base self-cross-linked reaction for forming a homogeneous hydrogel. Interestingly, the shortest time for the formation of the HACC/OSA hydrogel was within 74 s and the hydrogel had a uniform porous structure and enhanced mechanical properties. The HACC/OSA hydrogel withstood large compression deformation due to improved elasticity. What's more, this hydrogel possessed favorable swelling property, biodegradation, and water retention. The HACC/OSA hydrogels have great antibacterial properties against Staphylococcus aureus and Escherichia coli and demonstrated good cytocompatibility as well. The HACC/OSA hydrogels have a good sustained release effect on rhodamine (model drug). Thus, the obtained self-cross-linked HACC/OSA hydrogels in this study have potential applications in the field of biomedical carriers.
Collapse
Affiliation(s)
- Guiting Yu
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Chunqing Niu
- Department
of Mechanical Engineering and Robotics, Faculty of Textile Science
and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Jiali Liu
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Jue Wu
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Zheng Jin
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Yiyu Wang
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Kai Zhao
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| |
Collapse
|
5
|
Complexation behavior of carboxymethyl short-chain amylose and quaternized chitosan. Int J Biol Macromol 2022; 209:1914-1921. [PMID: 35500772 DOI: 10.1016/j.ijbiomac.2022.04.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/27/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
The complexation of carboxymethyl short-chain amylose (CSA) and hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and the stability of CSA/HACC nanocomplex were investigated. Resonance light scattering (RLS), turbidity, nanoparticle size and zeta potential analyses revealed that the complex coacervation occurred between CSA and HACC. The mass ratio and pH markedly influenced the complexation behavior; CSA with a higher degree of substitution (DS0.2) altered the complexation at a lower mass ratio and pH, increasing the turbidity and RLS intensity. The results of particle size and zeta potential analyses indicated that CSA/HACC complexes possessed the good pH and ionic strength stability. In addition to electrostatic interactions, hydrogen bonding and hydrophobic effects were also determined to be involved in the complexation process using thermal titration calorimetry (ITC). Additionally, the process was spontaneous, and CSA with a higher DS showed stronger complexation ability. These results may enable the understanding of polysaccharide complex behaviors.
Collapse
|
6
|
Masoomi Dezfooli S, Bonnot C, Gutierrez‐Maddox N, Alfaro AC, Seyfoddin A. Chitosan coated alginate beads as probiotic delivery system for New Zealand black footed abalone (
Haliotis iris
). J Appl Polym Sci 2022. [DOI: 10.1002/app.52626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seyedehsara Masoomi Dezfooli
- Aquaculture Biotechnology Research Group, Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Chloe Bonnot
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Noemi Gutierrez‐Maddox
- School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| |
Collapse
|
7
|
Facile formation of injectable quaternized chitosan/tannic acid hydrogels with antibacterial and ROS scavenging capabilities for diabetic wound healing. Int J Biol Macromol 2022; 195:190-197. [PMID: 34896467 DOI: 10.1016/j.ijbiomac.2021.12.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/26/2023]
Abstract
The wound healing process of the diabetic wound is often hindered by excessive oxygen free radicals and infection. An ideal wound dressing should possess great reactive oxygen species (ROS) scavenging property and considerable antibacterial ability. In this study, we facilely constructed a novel hydrogel dressing with excellent ROS scavenging property and outstanding antibacterial performance by introducing tannic acid (TA) into quaternized chitosan (QCS) matrix. Attributing to the suitable physical crosslinking between TA and QCS, this QCS/TA hydrogel was endowed with injectable and self-healing properties, which could avoid the various external squeezing on the irregular shape by wound dressing. The results showed that it could promote coagulation, suppress inflammation and expedite collagen deposition in the skin defect model of diabetic rats. This study provides a facile and convenient method for constructing injectable hydrogel dressing, which has application potentials in the clinical management of diabetic wounds.
Collapse
|
8
|
Marine Polysaccharides as a Versatile Biomass for the Construction of Nano Drug Delivery Systems. Mar Drugs 2021; 19:md19060345. [PMID: 34208540 PMCID: PMC8234399 DOI: 10.3390/md19060345] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Marine biomass is a treasure trove of materials. Marine polysaccharides have the characteristics of biocompatibility, biodegradability, non-toxicity, low cost, and abundance. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. The most studied marine polysaccharides include chitin, chitosan, alginates, hyaluronic acid, fucoidan, carrageenan, agarose, and Ulva. Marine polysaccharides have a wide range of applications in the field of biomedical materials, such as drug delivery, tissue engineering, wound dressings, and sensors. The drug delivery system (DDS) can comprehensively control the distribution of drugs in the organism in space, time, and dosage, thereby increasing the utilization efficiency of drugs, reducing costs, and reducing toxic side effects. The nano-drug delivery system (NDDS), due to its small size, can function at the subcellular level in vivo. The marine polysaccharide-based DDS combines the advantages of polysaccharide materials and nanotechnology, and is suitable as a carrier for different pharmaceutical preparations. This review summarizes the advantages and drawbacks of using marine polysaccharides to construct the NDDS and describes the preparation methods and modification strategies of marine polysaccharide-based nanocarriers.
Collapse
|