1
|
Chen C, Tian K, Xiong L, Dai Z, Li Q, Cheng M, Fu Q, Deng H. Solar Evaporator with Dual Gradient Heating Effect for Sustained and Efficient Desalination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411262. [PMID: 39811911 DOI: 10.1002/smll.202411262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Solar desalination shows promise in tackling freshwater shortages, but challenges arise from the trade-off between water transportation and heat supply, affecting evaporators' efficiency and salt resistance. Additionally, intermittent nature of solar radiation significantly diminishes overall evaporative performance. This study presents dual-gradient heating solar evaporator for efficient desalination. Dual-gradient heating is enabled through wettability difference (hydrophilicity aerogel and hydrophobicity film) and difference in phase transition temperature of phase change material, thus, effective heat supply can be provided to evaporation layer consisting of vertically oriented phase-change aerogel by surrounding heating layer consisting of phase-change film, with and without solar radiation. Employing this design, evaporator demonstrates industry-leading comprehensive performance in practical use. Under one sun illumination, evaporation rate achieves 6.84 kgm-2h-1 in 5.0 wt% salinity, with efficiency of 90.9%. In darkness, evaporation rate remains high at 2.61 kgm-2h-1 (30 minutes). Moreover, evaporator exhibits outstanding solar energy storage capacity and long-term stabe evaporative performance and salt resistance for 7-day testing. Furthermore, evaporator successfully produces freshwater from real Bohai Sea water under weak outdoor lighting, addressing recommended daily intake of water for 2.5 households. This work introduces new perspective for maximizing utilization of solar energy for seawater desalination and overcoming intermittent solar radiation.
Collapse
Affiliation(s)
- Chuanliang Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ke Tian
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lianhu Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zijian Dai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qianyang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Minhan Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Singh R, Priya H, Kumar SR, Trivedi D, Prasad N, Ahmad F, Chengaiyan JG, Haque S, Rana SS. Gum Ghatti: A Comprehensive Review on Production, Processing, Remarkable Properties, and Diverse Applications. ACS OMEGA 2024; 9:9974-9990. [PMID: 38463282 PMCID: PMC10918680 DOI: 10.1021/acsomega.3c08198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Gum ghatti, popularly known as Indian gum and obtained from Anogeissus latifolia, is a complex high-molecular-weight, water-soluble, and swellable nonstarch polysaccharide comprised of magnesium and calcium salts of ghattic acids and multiple monosugars. Unlike other nontimber forest produce, gums ghatti is a low-volume but high-value product. It has several applications and is widely used as food, in pharmaceuticals, and for wastewater treatment and hydrogel formation, and it has attracted a great deal of attention in the fields of energy, environmental science, and nanotechnology. Industrial applications of gum ghatti are primarily due to its excellent emulsification, stabilization, thickening, heat tolerance, pH stability, carrier, and biodegradable properties. However, utilization of gum ghatti is poorly explored and implemented due to a lack of knowledge of its production, processing, and properties. Nevertheless, there has been interest among investigators in recent times for exploring its production, processing, molecular skeleton, and functional properties. This present review focuses on production scenarios, processing aspects, structural and functional properties, and potential applications in the food, pharmaceuticals, nonfood, and other indigenous and industrial usages.
Collapse
Affiliation(s)
- Ranjit Singh
- ICAR-Indian
Agricultural Research Institute, Gauria Karma, Hazaribagh, Jharkhand 825405, India
- Food
Engineering and Bioprocess Technology, Asian
Institute of Technology, Klong
Luang, Pathum Thani 12120, Thailand
| | - Himani Priya
- ICAR-Indian
Agricultural Research Institute, Gauria Karma, Hazaribagh, Jharkhand 825405, India
| | - Simmi Ranjan Kumar
- Department
of Biotechnology, Faculty of Science, Mahidol
University, Phayathai, Bangkok 10400, Thailand
| | - Dipika Trivedi
- Food
Engineering and Bioprocess Technology, Asian
Institute of Technology, Klong
Luang, Pathum Thani 12120, Thailand
| | - Niranjan Prasad
- Agricultural
Structures and Process Engineering Division (AS&PE), ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand 834010, India
| | - Faraz Ahmad
- School
of Bio Science and Technology (SBST), Vellore
Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Jeevitha Gada Chengaiyan
- School
of Bio Science and Technology (SBST), Vellore
Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and
Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
- Centre of
Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab
Emirates
| | - Sandeep Singh Rana
- School
of Bio Science and Technology (SBST), Vellore
Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
3
|
Li M, Bai W, Yang Y, Zhang X, Wu H, Li Y, Xu Y. Waste Tea-Derived Theabrownins for Solar-Driven Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10158-10169. [PMID: 38354064 DOI: 10.1021/acsami.3c18438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Solar-driven seawater desalination has been considered an effective and sustainable solution to mitigate the global freshwater crisis. However, the substantial cost associated with photothermal materials for evaporator fabrication still hinders large-scale manufacturing for practical applications. Herein, we successfully obtained high yields of theabrownins (TB), which were oxidation polymerization products of polyphenols from waste and inferior tea leaves using a liquid-state fermentation strategy. Subsequently, a series of photothermal complexes were prepared based on the metal-phenolic networks assembled from TB and metal ions (Fe(III), Cu(II), Ni(II), and Zn(II)). Also, the screened TB@Fe(III) complexes were directly coated on a hydrophilic poly(vinylidene fluoride) (PVDF) membrane to construct the solar evaporation device (TB@Fe(III)@PVDF), which not only demonstrated superior light absorption property and notable hydrophilicity but also achieved a high water evaporation rate of 1.59 kg m-2 h-1 and a steam generation efficiency of 90% under 1 sun irradiation. More importantly, its long-term stability and exceptionally low production cost enabled an important step toward the possibility of large-scale practical applications. We believe that this study holds the potential to pave the way for the development of sustainable and cost-effective photothermal materials, offering new avenues for utilization of agriculture resource waste and solar-driven water remediation.
Collapse
Affiliation(s)
- Maoyun Li
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Zhang N, Zhang J, Zhu X, Yuan S, Wang D, Xu H, Wang Z. Synergistic Effect of Ti 3C 2T x MXene Nanosheets and Tannic Acid-Fe 3+ Network in Constructing High-Performance Hydrogel Composite Membrane for Photothermal Membrane Distillation. NANO LETTERS 2024; 24:724-732. [PMID: 38166126 DOI: 10.1021/acs.nanolett.3c04159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.
Collapse
Affiliation(s)
- Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Xiaohui Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Haoran Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
5
|
Song C, Jin Y. Distribution-according-to-work: Enhancing solar vapor generation of photothermal sponge by using cellulose-based water storage platform. Int J Biol Macromol 2023; 253:126830. [PMID: 37717868 DOI: 10.1016/j.ijbiomac.2023.126830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Interfacial solar vapor generation (ISVG) has shown extraordinary promise in achieving high-efficiency water purification. However, the rapid water supply often leads to excessive water in the solar absorber, resulting in undesired heat loss and a decrease in evaporation rate. To tackle this issue, we developed a bio-based solar evaporator comprising cellulose-based water retention resin (CRR) and straw-derived photothermal sponge. CRR serves as an effective water storage platform with a high binding capacity for water molecules, preventing water from entering the absorber and reducing the water evaporation enthalpy. The water management of CRR confines the solar-to-vapor conversion to the interface between CRR and the photothermal sponge, thereby eliminating the adverse effects of excess water. Additionally, the ISVG process operates based on the principle of Distribution-according-to-work, meaning that the quantity of generated vapor depends on the evolution of the sponge structure. Optimal sponge configuration enables evaporation rates of 2.28 and 1.53 kg/m2/h under solar irradiation of 1.0 and 0.5 kW/m2, respectively. Additionally, the obtained evaporator is capable of producing 7.1 kg/m2/day of freshwater in outdoor experiment. This report proposes a novel approach to designing an ISVG device that incorporates effective water management strategy for achieving high-efficiency water purification in real-world scenarios.
Collapse
Affiliation(s)
- Changyuan Song
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Yin Jin
- Nanyang Vocational College of Agriculture, Nanyang 473000, PR China
| |
Collapse
|
6
|
Li J, Li Y, Song W, Li X, Yang L, Yan L. Boosting interfacial solar steam generation by three-dimensional bilayer cellulose aerogels. J Colloid Interface Sci 2023; 650:339-349. [PMID: 37413868 DOI: 10.1016/j.jcis.2023.06.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Interfacial solar steam generation (ISSG) provides a sustainable approach of clean water production through desalination and water purification. It is still needed to pursue a fast evaporation rate, high-quality freshwater production, and low-cost evaporators. Herein, a three-dimensional (3D) bilayer aerogel was fabricated using cellulose nanofiber (CNF) as a skeleton filled with polyvinyl alcohol phosphate ester (PVAP), and carbon nanotubes (CNT) as a light absorbing material in the top layer. The CNF/PVAP/CNT aerogel (CPC) had broadband light absorption ability and exhibited an ultrafast water transfer rate. The lower thermal conductivity of CPC effectively confined the convert heat in the top surface and minimized heat loss. Additionally, a large amount of intermediate water caused by water activation decreased the evaporation enthalpy. Under 1 sun irradiation, the CPC-3 (3.0 cm height of CPC) achieved a high evaporation rate of 4.02 kg m-2 h-1 with an energy conversion efficiency of 125.1%. The additional convective flow and environmental energy made CPC achieve an ultrahigh evaporation rate of 11.37 kg m-2 h-1, surpassing 673% of the solar input energy. More importantly, the continuous solar desalination and higher evaporation rate (10.70 kg m-2 h-1) in seawater revealed that CPC was a promising candidate for practical desalination. Outdoor cumulative evaporation was up to 73.2 kg m-2 d-1 in weak sunlight and lower temperature, which would meet the daily drinking water demands of 20 people. The excellent cost-effectiveness of 1.085 L h-1 $-1 presented its potential for a wide range of practical applications, such as solar desalination, wastewater treatment, and metal extractions.
Collapse
Affiliation(s)
- Jing Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Yanfei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Wen Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Xuguang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Liyuan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
7
|
Chen C, Xiong L, Zhang X, Tian K, Dai Z, Fu Q, Deng H. Gradient heating induced better balance among water transportation, salt resistance and heat supply in a high performance multi-functional solar-thermal desalination device. MATERIALS HORIZONS 2023; 10:5161-5176. [PMID: 37712534 DOI: 10.1039/d3mh01105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Solar-driven desalination (SDD) is a promising technology for addressing water scarcity. However, how to overcome the trade-off between water transportation and heat supply of the evaporator to achieve a high evaporation rate and good salt tolerance simultaneously remains a challenge. Here, a novel all-in-one multi-functional SDD evaporator undergoing gradient heating is used. This evaporator incorporates a hydrophilic PDA (polydopamine)@CNT(carbon nanotube)/PVA (polyvinyl alcohol) aerogel with vertically aligned structures as the water evaporation layer, enabling rapid water transportation. Surrounding the evaporation layer, there is a photothermal hydrophobic CCP (cotton/CNT/polydimethylsiloxane) film that serves as the heating layer, enhancing the heat supply to the evaporation layer. This innovative design strikes a favorable balance between water transportation and heat supply, facilitating high evaporation rates and good salt tolerance simultaneously, while also maximizing electricity generation. Due to the wettability difference between the evaporation layer (PVA aerogel) and heating layer (CCP film), a record stable temperature gradient of nearly 70 °C was formed between the CCP film and the PVA aerogel under 1 sun irradiation, so that heat on the high-temperature CCP film was continuously transferred to the low-temperature aerogel through its thermal conductive network, leading to a high evaporation rate of 6.96 kg m-2 h-1 under 1 sun irradiation in 5.0 wt% sodium chloride (NaCl) brine (higher than the world average seawater salinity (3.5 wt%)). Meanwhile, high flux directional flow of brine generated 130 mV stable voltage and 120 μA circuit current. Furthermore, the evaporator illustrates good stability for consecutive 7 days of testing and shows industry-leading comprehensive performance of SDD in actual use. More importantly, it was tested in real Bohai seawater under weak natural light, and fresh water generated can meet the recommended daily intake of water for 2.6 households and the simultaneously generated voltage reaches above 60 mV. In addition, the evaporator exhibits good adsorption capacity for heavy metals and dye molecules. This simple and universal solar evaporation structure is suitable for the assembly of gradient thermal structures for most solar thermal materials reported in the literature, which provides a new route for maximizing the use of solar energy for freshwater and electricity generation.
Collapse
Affiliation(s)
- Chuanliang Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lianhu Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xuezhong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Ke Tian
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zijian Dai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Jiang H, Liu X, Wang H, Wang D, Guo Y, Wang D, Gao G, Wang X, Hu C. Waterwheel-inspired rotating evaporator for efficient and stable solar desalination even in saturated brine. Sci Bull (Beijing) 2023; 68:1640-1650. [PMID: 37481437 DOI: 10.1016/j.scib.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/24/2023]
Abstract
Solar desalination is one of the most promising technologies to address global freshwater shortages. However, traditional evaporators encounter the bottleneck of reduced evaporation rate or even failure due to salt accumulation in high-salinity water. Inspired by ancient waterwheels, we have developed an adaptively rotating evaporator that enables long-term and efficient solar desalination in brines of any concentration. The evaporator is a sulphide-loaded drum-type biochar. Our experiments and numerical simulations show that this evaporator, thanks to its low density and unique hydrophilic property, rotates periodically under the center-of-gravity shift generated by salt accumulation, achieving self-removal of salt. This allows it to maintain a high evaporation rate of 2.80 kg m-2 h-1 within 24 h even in saturated brine (26.47%), which was not achieved previously. This proof-of-concept work therefore demonstrates a concentration- and time-independent, self-rotation-induced solar evaporator.
Collapse
Affiliation(s)
- Hanjin Jiang
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of Ministry of Education, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xinghang Liu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China
| | - Haitao Wang
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of Ministry of Education, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Dewen Wang
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of Ministry of Education, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yanan Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dong Wang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Gang Gao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China.
| | - Xiaoyi Wang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | - Chaoquan Hu
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of Ministry of Education, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, School of Materials Science and Engineering, Jilin University, Changchun 130012, China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| |
Collapse
|
9
|
Tunsound V, Krasian T, Daranarong D, Jantanasakulwong K, Punyodom W, Sriyai M, Somsunan R, Manokruang K, Rachtanapun P, Tipduangta P, Srithep Y, Amnuaypanich S, Dalton AB, Worajittiphon P. Ethyl cellulose composite membranes containing a 2D material (MoS 2) and helical carbon nanotubes for efficient solar steam generation and desalination. Int J Biol Macromol 2023; 244:125390. [PMID: 37330098 DOI: 10.1016/j.ijbiomac.2023.125390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
With the increasing water consumption, water evaporators have been investigated for clean water production. Herein, the fabrication of electrospun composite membrane evaporators based on ethyl cellulose (EC), with the incorporation of light-absorption enhancers 2D MoS2 and helical carbon nanotubes, for steam generation and solar desalination is described. Under natural sunlight, the maximum water evaporation rate was 2.02 kg m-2 h-1 with an evaporation efficiency of 93.2 % (1 sun) and reached 2.42 kg m-2 h-1 at 12:00 pm (1.35 sun). The composite membranes demonstrated self-floating on the air-water interface and minimal accumulation of superficial salt during the desalination process due to the hydrophobic character of EC. For concentrated saline water (21 wt% NaCl), the composite membranes maintained a relatively high evaporation rate of up to ~79 % compared to the freshwater evaporation rate. The composite membranes are robust due to the thermomechanical stability of the polymer even while operating under steam-generating conditions. Over repeated use, they exhibited excellent reusability with a relative water mass change of >90 % compared to the first evaporation cycle. Moreover, desalination of artificial seawater produced a lower cation concentration (~3-5 orders of magnitude) and thereby yielded potable water, indicating the potential for solar-driven freshwater generation.
Collapse
Affiliation(s)
- Vasuphat Tunsound
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tharnthip Krasian
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Montira Sriyai
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Runglawan Somsunan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kiattikhun Manokruang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yottha Srithep
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Sittipong Amnuaypanich
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alan B Dalton
- University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
10
|
Ni A, Fu D, Lin P, Wang X, Xia Y, Han X, Zhang T. Eco-friendly photothermal hydrogel evaporator for efficient solar-driven water purification. J Colloid Interface Sci 2023; 647:344-353. [PMID: 37267797 DOI: 10.1016/j.jcis.2023.05.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
The field of solar vapor generation has developed rapidly in recent years, but achieving the goals of a high evaporation rate, eco-friendliness and rapid preparation with low-cost raw materials is still a challenge. In this work, a type of photothermal hydrogel evaporator was prepared by blending eco-friendly poly(vinyl alcohol), agarose, Fe3+ and tannic acid (TA) together, in which the tannic acid-ferric ion (TA*Fe3+) complexes served as photothermal materials and effective gelators. The results indicate that the TA*Fe3+ complex exhibits excellent gelatinization ability and light-absorption performance, which leads to a compressive stress of 0.98 MPa at 80% strain and up to 85% light absorption ratio in the photothermal hydrogel. For interfacial evaporation, a high rate of 1.897 ± 0.11 kg·m-2·h-1 corresponding to an energy efficiency of 89.7 ± 2.73% under 1 sun irradiation is achieved. Moreover, the hydrogel evaporator exhibits high stability in a 12-hour test and a 20-cycle test without a decline in evaporation performance. The outdoor testing results show that the hydrogel evaporator can achieve an evaporation rate of > 0.70 kg/m2 and effectively purify wastewater treatment and seawater desalination.
Collapse
Affiliation(s)
- Anqi Ni
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Danni Fu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Peng Lin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Xuemin Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Youyi Xia
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Tingting Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China.
| |
Collapse
|
11
|
Li H, Zhang J, Xue H, Li L, Liu X, Yang L, Gu Z, Cheng Y, Li Y, Huang Q. An injectable all-small-molecule dynamic metallogel for suppressing sepsis. MATERIALS HORIZONS 2023; 10:1789-1794. [PMID: 36853277 DOI: 10.1039/d3mh00005b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
All-small-molecule dynamic hydrogels have shown great promise in cell culture, tissue engineering, and controlled drug release. The further development of more kinds of all-small-molecule dynamic hydrogels is severely hindered by the lack of enough commensurate building blocks from nature and on the market. Inspired by the widely developed metal-organic framework structures, herein we report a facile fabrication of metallogels by direct gelation of small molecular compounds including aminoglycosides (AGs), 2,2'-bipyridine-4,4'-dicarboxaldehyde (BIPY), and metal ions via coordination interactions and Schiff base reactions. These prepared metallogels exhibited good biodegradability and biosafety, excellent conductivity, tunable mechanical properties and potent antibacterial activities both in vitro and in vivo. This study provides a new strategy for expanding the scope of all-small-molecule dynamic metallogels for various biomedical applications.
Collapse
Affiliation(s)
- Haotian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hongrui Xue
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lin Li
- Department of Orthopedics Oncology, Changzheng Hospital, the Navy Medical University, Shanghai, 200003, China.
| | - Xun Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Quan Huang
- Department of Orthopedics Oncology, Changzheng Hospital, the Navy Medical University, Shanghai, 200003, China.
| |
Collapse
|
12
|
Yang P, Bai W, Zou Y, Zhang X, Yang Y, Duan G, Wu J, Xu Y, Li Y. A melanin-inspired robust aerogel for multifunctional water remediation. MATERIALS HORIZONS 2023; 10:1020-1029. [PMID: 36692037 DOI: 10.1039/d2mh01474b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solar-driven vapor generation has emerged as a promising wastewater remediation technology for clean water production. However, the complicated and diversified contaminants in wastewater still restrict its practical applications. Herein, inspired by the melanin in nature, a robust aerogel was facilely fabricated for multifunctional water remediation via a one-pot condensation copolymerization of 5,6-dihydroxyindole and formaldehyde. Benefiting from the superhydrophilicity, underwater superoleophobicity, and synergistic coordination effects, the resulting aerogel not only showed excellent performances in underwater oil resistance and oil-water separation ability, but also removed organic dyes and heavy metal ions contaminants in wastewater simultaneously. Moreover, owing to its admirable light harvesting capacity and porous microstructure for fast water transportation, the aerogel-based evaporator exhibited an excellent evaporation rate of 1.42 kg m-2 h-1 with a 91% evaporation efficiency under 1 sun illumination, which can be reused for long-term water evaporation. Note that such a stable evaporation rate could be maintained even in wastewater containing complex multicomponent contaminants. Outdoor evaporation experiments for lotus pond wastewater under natural sunlight also proved its great potential in practical applications. All those promising features of this all-in-one melanin-inspired aerogel may provide new strategies for the development of robust photothermal devices for multifunctional solar-driven water remediation.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinrong Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
13
|
Guo Z, Liu T, Gao W, Iffelsberger C, Kong B, Pumera M. Multi-Wavelength Light-Responsive Metal-Phenolic Network-Based Microrobots for Reactive Species Scavenging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210994. [PMID: 36591619 DOI: 10.1002/adma.202210994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Light-driven microrobots with different propulsion mechanisms have attracted great attention in microrobot synthesis and applications. However, current systems rely heavily on precious metals, using a complex synthesis process and limited working wavelength. It is therefore of great interest to fabricate microrobots that can be driven by multi-wavelength irradiation and with simple components. Here, metal-phenolic network (MPN)-based microrobots are synthesized using a sacrificial polystyrene bead template and an extra capping is added to regulate their symmetry. The hollow MPN microrobots with different layers of capping are capable of moving under both near-infrared (NIR) irradiation and ultraviolet (UV) irradiation, without fuel. The velocity of the microrobots under irradiation is altered by the thickness of the asymmetric capping and their motion could be manipulated remotely by switching the NIR or UV irradiation on and off. With light-driven mobility, the reactive oxygen and nitrogen species (RONS) scavenging activity of the microrobots is significantly increased. Therefore, this proposed microrobot system provides a synthesis strategy to develop asymmetric light-navigated microrobots for future medical treatment with tunable structure, multi-wavelength light-responsive mobility, and great RONS scavenging capacity.
Collapse
Affiliation(s)
- Ziyi Guo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Wanli Gao
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
| | - Christian Iffelsberger
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
14
|
Multifunctional Photoabsorber for Highly Efficient Interfacial Solar Steam Generation and Wastewater Treatment. ChemistrySelect 2023. [DOI: 10.1002/slct.202204386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Xu Y, Xu T, Guo Y, Liu W, Wang J. Scalable and biomimetic anti-oil-fouling photothermal fabric for efficient solar-driven interfacial evaporation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Zhang X, Yan Y, Li N, Yang P, Yang Y, Duan G, Wang X, Xu Y, Li Y. A robust and 3D-printed solar evaporator based on naturally occurring molecules. Sci Bull (Beijing) 2023; 68:203-213. [PMID: 36681591 DOI: 10.1016/j.scib.2023.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
The interfacial solar desalination has been considered a promising method to address the worldwide water crisis without sophisticated infrastructures and additional energy consumption. Although various advanced solar evaporators have been developed, their practical applications are still restricted by the unsustainable materials and the difficulty of precise customization for structure to escort high solar-thermal efficiency. To address these issues, we employed two kinds of naturally occurring molecules, tannic acid and iron (III), to construct a low-cost, highly efficient and durable interfacial solar evaporator by three-dimensional (3D) printing. Based on a rational structural design, a robust and 3D-printed evaporator with conical array surface structure was developed, which could promote the light harvesting capacity significantly via the multiple reflections and anti-reflection effects on the surface. By optimizing the height of the conical arrays, the 3D-printed evaporator with tall-cone structure could achieve a high evaporation rate of 1.96 kg m-2 h-1 under one sun illumination, with a photothermal conversion efficiency of 94.4%. Moreover, this evaporator was also proved to possess excellent desalination performance, recycle stability, anti-salt property, underwater oil resistance, as well as adsorption capacity of organic dye contaminants for multipurpose water purification applications. It was believed that this study could provide a new strategy to fabricate low-cost, structural regulated solar evaporators for alleviating the dilemma of global water scarcity using abundant naturally occurring building blocks.
Collapse
Affiliation(s)
- Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ning Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Li J, Li N, Wu X, Wang S, Li S, Guo C, Yu L, Wang Z, Murto P, Xu X. Photothermal Aerogel Beads Based on Polysaccharides: Controlled Fabrication and Hybrid Applications in Solar-Powered Interfacial Evaporation, Water Remediation, and Soil Enrichment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50266-50279. [PMID: 36305787 DOI: 10.1021/acsami.2c16634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solar-powered interfacial evaporation has emerged as an innovative and sustainable technology for clean water production. However, the rapid, mass and shape-controlled fabrication of three-dimensional (3D) steam generators (SGs) for versatile hybrid applications remains challenging. Herein, composite aerogel beads with self-contained properties (i.e., hydrophilic, porous, photothermal, and durable) are developed and demonstrated for threefold hybrid applications including efficient solar-powered interfacial evaporation, water remediation, and controlled soil enrichment. The rational incorporation of selected polysaccharides enables us to fabricate bead-like aerogels with rapid gelation, continuous processing, and enhanced ion adsorption. The composite beads can attain a high water evaporation rate of 1.62 kg m-2 h-1 under 1 sun. Meanwhile, high phosphate adsorption capacity of over 120 mg g-1 is achieved in broad pH (2.5-12.4) and concentration (200-1000 mg L-1) ranges of phosphate solutions. Gratifyingly, we demonstrate the first example of recycling biomaterials from interfacial SGs for controlled nutrient release, soil enrichment, and sustainable agriculture. The phosphate-saturated beads can be gradually broken down in the soil. Macronutrients (N, P, and K) can be slowly released in 50 days, sustaining the plant germination and growth in a whole growth stage. This work shines light on the mass and controlled fabrication of aerogel beads based on double-network biopolymers, not merely scaling up solar-powered interfacial evaporation but also considering water remediation, waste material disposal, and value-added conversion.
Collapse
Affiliation(s)
- Jingjing Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Na Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaochun Wu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuxue Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Cui Guo
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhihang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Petri Murto
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
18
|
Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. Robust and multifunctional natural polyphenolic composites for water remediation. MATERIALS HORIZONS 2022; 9:2496-2517. [PMID: 35920729 DOI: 10.1039/d2mh00768a] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (e.g., nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection. Finally, the future challenges in this field are also prospected. It is anticipated that this review will provide new opportunities towards the future development of natural polyphenols and other kinds of naturally occurring molecules in water purification applications.
Collapse
Affiliation(s)
- Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
19
|
Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting. Int J Biol Macromol 2022; 222:2888-2921. [DOI: 10.1016/j.ijbiomac.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
20
|
Shen Y, Yuan Z, Cheng F, Cui Z, Ma D, Bai Y, Zhao S, Deng J, Li E. Preparation and characterization of ZnO/graphene/graphene oxide/multi-walled carbon nanotube composite aerogels. Front Chem 2022; 10:992482. [PMID: 36046726 PMCID: PMC9421254 DOI: 10.3389/fchem.2022.992482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
ZnO/Graphene (G)/Graphene Oxide (GO)/Multi-walled Carbon Nanotube (MCNT) composite aerogels with a three-dimensional porous structure were prepared by the sol-gel method under average temperature and alkaline conditions, combined with freeze-drying process and heat treatment process. The photocatalytic degradation of Rhodamine B (RhB) was mainly studied. The scanning electron microscope (SEM) test results showed that the morphology uniformity of the ZnO/G/GO/MCNT composite aerogel was significantly enhanced, which effectively solving the agglomeration problem of MCNT and ZnO. The photocatalytic degradation test results of RhB show that due to the synergistic effect of physical adsorption and photocatalytic degradation, the total degradation efficiency of RhB by ZnO/G/GO/MCNT could reach 86.8%, which is 3.3 times higher than that of ZnO. In addition, the synergistic effect of ZnO and G effectively hinders the recombination of photo-generated electron-hole pairs and enhances photocatalytic activity. The ZnO/G/GO/MCNT composite aerogel can be applied in the visible light catalytic degradation of water pollution.
Collapse
Affiliation(s)
- Yang Shen
- School of Science, Xi’an University of Technology, Xi’an, China
- *Correspondence: Yang Shen, ; Zhen Cui, ; Enling Li,
| | - Zhihao Yuan
- School of Science, Xi’an University of Technology, Xi’an, China
| | - Fengjiao Cheng
- School of Electrical Engineering, Xi’an University of Technology, Xi’an, China
| | - Zhen Cui
- School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, China
- *Correspondence: Yang Shen, ; Zhen Cui, ; Enling Li,
| | - Deming Ma
- School of Science, Xi’an University of Technology, Xi’an, China
| | - Yueyue Bai
- School of Science, Xi’an University of Technology, Xi’an, China
| | - Shuqing Zhao
- School of Science, Xi’an University of Technology, Xi’an, China
| | - Jieyao Deng
- School of Science, Xi’an University of Technology, Xi’an, China
| | - Enling Li
- School of Science, Xi’an University of Technology, Xi’an, China
- *Correspondence: Yang Shen, ; Zhen Cui, ; Enling Li,
| |
Collapse
|
21
|
|