1
|
Shi C, Guo C, Wang S, Li W, Zhang X, Lu S, Ning C, Tan C. The mechanism of pectin in improving anthocyanin stability and the application progress of their complexes: A review. Food Chem X 2024; 24:101955. [PMID: 39568512 PMCID: PMC11577125 DOI: 10.1016/j.fochx.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Improving anthocyanin stability is a major challenge for the food industry. Studies have revealed that the interaction with pectin through non-covalent bonds can improve the anthocyanin stability, thus showing the potential to alleviate the above challenges. However, the interactions are highly complex and diverse. Thus, analyzing the effect of this interaction on anthocyanin stability is essential to promote anthocyanin-pectin complexes application in functional foods. Pectin can interact with anthocyanins through covalent and non-covalent interactions, and these interactions are affected by their structure, the external environment, and the processing methods. Through their interaction with pectin, the thermal, color, and storage stability of anthocyanins are improved, enhancing their bioavailability in the gastrointestinal and facilitating their application range in food processing. This review provides a theoretical reference for improving anthocyanin stability and increasing the application range of anthocyanin-pectin complexes.
Collapse
Affiliation(s)
- Chenyang Shi
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chongting Guo
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Wang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Weixuan Li
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Xue Zhang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Lu
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chong Ning
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chang Tan
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| |
Collapse
|
2
|
Wang J, Wang J, Hao J, Jiang M, Zhao C, Fan Z. Antioxidant Activity and Structural Characterization of Anthocyanin-Polysaccharide Complexes from Aronia melanocarpa. Int J Mol Sci 2024; 25:13347. [PMID: 39769111 PMCID: PMC11728365 DOI: 10.3390/ijms252413347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Anthocyanins and polysaccharides are among the primary components of numerous foodstuffs, and their interaction exerts a considerable influence on the texture and nutritional value of foods. In order to improve the antioxidant properties and stability of anthocyanins as well as their bioavailability, in this study, anthocyanin-polysaccharide complexes with varying compounding ratios (1:0.5, 1:1.0, 1:1.5, 1:2.0, 1:2.5, 1:3.0) were prepared from Aronia melanocarpa anthocyanins and polysaccharides derived from the fruit pomace of Aronia melanocarpa. These compounds were characterized, and their antioxidant capacity was determined. The findings demonstrated that the antioxidant activity of anthocyanins was markedly enhanced through the process of compounding with polysaccharides. The most efficacious antioxidant effect was determined by measuring the IC50 of the antioxidant activity of mixtures at different anthocyanin/polysaccharide complexing ratios. The results of ultraviolet-visible spectroscopy, infrared spectroscopy, and scanning electron microscopy revealed the features of the anthocyanin-polysaccharide complexes with ratios of 1:0.5, 1:1.0, 1:1.5, and 1:2.5. The anthocyanins and polysaccharides were observed to enhance the intensity of ultraviolet absorption with respect to that of the individual molecules, and it was noted that they were able to bond to each other through hydrogen bonding. Additionally, the morphology of the compositions differed from that of the individual components. This provides a theoretical foundation for the structural design of anthocyanin-polysaccharide-containing foods and the development and utilization of novel food ingredients.
Collapse
Affiliation(s)
- Jie Wang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Jingyi Wang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Jiahui Hao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Miao Jiang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Congcong Zhao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
| | - Ziluan Fan
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.W.); (J.W.); (J.H.); (M.J.); (C.Z.)
- Key Laboratory of Forest Food Resources Utilization, Harbin 150040, China
| |
Collapse
|
3
|
Liang T, Jing P, He J. Nano techniques: an updated review focused on anthocyanin stability. Crit Rev Food Sci Nutr 2024; 64:11985-12008. [PMID: 37574589 DOI: 10.1080/10408398.2023.2245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Anthocyanins (ACNs) are one of the subgroups of flavonoids and getting intensive attraction due to the nutritional values. However, their application of ACNs is limited due to their poor stability and bioavailability. Accordingly, nanoencapsulation has been developed to enhance its stability and bio-efficacy. This review focuses on the nano-technique applications of delivery systems that be used for ACNs stabilization, with an emphasis on physicochemical stability and health benefits. ACNs incorporated with delivery systems in forms of nano-particles and fibrils can achieve advanced functions, such as improved stability, enhanced bioavailability, and controlled release. Also, the toxicological evaluation of nano delivery systems is summarized. Additionally, this review summarizes the challenges and suggests the further perspectives for the further application of ACNs delivery systems in food and medical fields.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian He
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| |
Collapse
|
4
|
Xia P, Li R, Chen M, Zeng F, Zhou W, Hou T. Proanthocyanidins and β-Glucan Synergistically Regulate Intestinal Inflammation in Dextran Sulfate Sodium-Induced Colitis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19366-19377. [PMID: 39178327 DOI: 10.1021/acs.jafc.4c03544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Proanthocyanidins (PA) have been proven to have an anti-inflammation effect in multiple models by regulating oxidative stress. β-glucan (BG) could alleviate colitis from the perspectives of intestinal permeability and gut microbiota. In the present study, the synergistic anti-inflammatory function of PA and BG was explored from multiple aspects including immune response, intestinal barrier, gut microbiota, and differential metabolites. The results showed that the supplementation of PA and BG improved the colitis symptoms including atrophy of the colon, body weight loss, and organ index increase. Additionally, inflammatory cytokine levels and oxidative stress status were significantly regulated with the intake of PA and BG. Moreover, PA and BG intervention improved intestinal permeability and promoted the expression of barrier proteins. The microbiome and metabolic profile of cecal contents showed that PA and BG supplementation increased the abundance of anti-inflammatory bacteria and decreased the abundance of pro-inflammatory bacteria. Furthermore, some beneficial metabolites involved in amino acid metabolism, carbohydrate metabolism, and biosynthesis of other secondary metabolite pathways were increased. Overall, these findings have demonstrated the regulation of the inflammatory response and remodel of metabolite profiles by PA and BG complexes, indicating that it may serve as a new strategy for inflammatory bowel disease treatment in the future.
Collapse
Affiliation(s)
- Pengkui Xia
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Zhai H, Ling M, Li S, Chen B, Zhao X, Tong W, Cheng C, Li J, Shi Y, Duan C, Lan Y. The characteristics of polysaccharide composition of red wines in China: Effects of grape varieties, origins and winemaking techniques. Food Chem X 2024; 22:101283. [PMID: 38524777 PMCID: PMC10957457 DOI: 10.1016/j.fochx.2024.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
In this work, the polysaccharide profile of different grapes and red wines in China was studied and the influences of two common winemaking techniques on the components of wine were analyzed. The soluble polysaccharide content in the skins of native grape species in China (non-Vitis vinifera grapes) was significantly higher than that of Vitis vinifera species, while the terroir effect on V. vinifera varieties was limited. The combination of the enzyme preparation and the addition of mannoproteins (MPs) at the beginning of alcoholic fermentation (MP1 + E) could increase the contents of MPs and acid polysaccharides (APS) compared to the control wines. Meanwhile, better color characteristics and higher level of anthocyanin derivatives were observed. However, MP1 + E treatment reduced the content of polysaccharides rich in arabinose and galactose (PRAGs) due to enzymatic hydrolysis. The study will provide useful information for winemakers to regulate the wine polysaccharide profile.
Collapse
Affiliation(s)
- Hongyue Zhai
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengqi Ling
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bainian Chen
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xu Zhao
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Wenzhe Tong
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chifang Cheng
- Xinjiang CITIC Guoan Wine Co. Ltd., Manasi, Changji 832200, China
| | - Jin Li
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai 264000, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
6
|
Campbell JR, Scholasch T, Waterhouse AL, Kennedy JA. Napa Valley Cabernet Sauvignon Proanthocyanidin Changes During Fruit Ripening: A Multi-Appellation Survey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38833680 DOI: 10.1021/acs.jafc.4c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In 2015, an experiment was designed to investigate the distribution and variance of in winegrape flavonoids across the ripening phase in the Napa Valley. This Cabernet Sauvignon experiment was intended to evaluate the polyphenol differences across Napa Valley in order to understand parameters controlling "proanthocyanidin activity." This method has shown promise in understanding proanthocyanidin (PA) astringency based on size distribution, pigmentation, conformation, and composition. Results from whole berry partial extractions showed that seed PA material was driving PA activity early in the ripening phase, while the formation of the pigmented polymer led to a decrease later in the growing season. Multivariate analysis showed that the main drivers of changes across the ripening phase were the molecular masses of PAs and the amount of pigmentation. Given the high amount of variability seen in the experiment between sites in such a small geographical area, the results suggest that manipulation of PA activity may be possible in the vineyard, perhaps explaining variations in wine mouthfeel attributes between locations. These results can be used to develop furthermore controlled experiments targeting the variables responsible for PA activity changes.
Collapse
Affiliation(s)
- James R Campbell
- Department of Viticulture and Enology, University of California Davis, One Shields Ave., Davis, California 95616, United States
- California State University, 2360 East Barstow Avenue MS VR89, Fresno, California 93740-8003, United States
| | | | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California Davis, One Shields Ave., Davis, California 95616, United States
| | - James A Kennedy
- California State University, 2360 East Barstow Avenue MS VR89, Fresno, California 93740-8003, United States
- Functional Phenolics LLC, Corvallis, Oregon 97330, United States
| |
Collapse
|
7
|
Castangia I, Aroffu M, Fulgheri F, Abi Rached R, Corrias F, Sarais G, Bacchetta G, Argiolas F, Pinna MB, Murru M, Manca ML, Manconi M, Nácher A. From Field to Waste Valorization: A Preliminary Study Exploring the Impact of the Wine Supply Chain on the Phenolic Profile of Three Sardinian Pomace Extracts. Foods 2024; 13:1414. [PMID: 38731785 PMCID: PMC11083656 DOI: 10.3390/foods13091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
The winemaking process generates an annual global production of about 10 million tons of waste consisting of stalks, skin, and seeds. The possible reutilization of wine pomace is strictly linked to its chemical composition. In this preliminary study, three different Sardinian white grapes (Malvasia, Vermentino and Nasco) grown in the same area were evaluated through a whole wine production chain. To reduce environmental impact, all the grapes were treated following the integrated production practice (IPP) strategies. The adopted agronomic methods and the main physico-chemical parameters of the fresh fruits and musts were evaluated. A fully qualitative and quantitative characterization of the phenolic fraction of the pomace extracts was performed by HPLC-DAD after a post-winemaking process. Water and ethanol were utilized as green solvents in the extraction process. Additionally, the entire pomace post-winemaking process was carried out within the winery facilities to reduce energy loss and road transportation. The findings demonstrated that large amounts of beneficial polyphenols are present in pomace extracts, and that the type of grape used, agronomic practices, and winemaking method all influence the quantity and quality of the extracts. The polyphenol concentrations in the Vermentino (28,391.5 ± 7.0 mg/kg) and Malvasia pomace (11,316.3 ± 6.5 mg/kg) were found to be the highest and lowest, respectively.
Collapse
Affiliation(s)
- Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Cagliari, Italy; (M.A.); (F.F.); (R.A.R.); (F.C.); (G.S.); (G.B.); (M.L.M.); (M.M.)
| | - Matteo Aroffu
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Cagliari, Italy; (M.A.); (F.F.); (R.A.R.); (F.C.); (G.S.); (G.B.); (M.L.M.); (M.M.)
| | - Federica Fulgheri
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Cagliari, Italy; (M.A.); (F.F.); (R.A.R.); (F.C.); (G.S.); (G.B.); (M.L.M.); (M.M.)
| | - Rita Abi Rached
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Cagliari, Italy; (M.A.); (F.F.); (R.A.R.); (F.C.); (G.S.); (G.B.); (M.L.M.); (M.M.)
| | - Francesco Corrias
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Cagliari, Italy; (M.A.); (F.F.); (R.A.R.); (F.C.); (G.S.); (G.B.); (M.L.M.); (M.M.)
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Cagliari, Italy; (M.A.); (F.F.); (R.A.R.); (F.C.); (G.S.); (G.B.); (M.L.M.); (M.M.)
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Cagliari, Italy; (M.A.); (F.F.); (R.A.R.); (F.C.); (G.S.); (G.B.); (M.L.M.); (M.M.)
| | - Francesca Argiolas
- Argiolas SpA|Via Roma, 28/30, 09040 Cagliari, Italy; (F.A.); (M.B.P.); (M.M.)
| | - Maria Barbara Pinna
- Argiolas SpA|Via Roma, 28/30, 09040 Cagliari, Italy; (F.A.); (M.B.P.); (M.M.)
| | - Mariano Murru
- Argiolas SpA|Via Roma, 28/30, 09040 Cagliari, Italy; (F.A.); (M.B.P.); (M.M.)
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Cagliari, Italy; (M.A.); (F.F.); (R.A.R.); (F.C.); (G.S.); (G.B.); (M.L.M.); (M.M.)
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Cagliari, Italy; (M.A.); (F.F.); (R.A.R.); (F.C.); (G.S.); (G.B.); (M.L.M.); (M.M.)
| | - Amparo Nácher
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain;
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| |
Collapse
|
8
|
Karadag A, Ozkan K, Sagdic O. Development of microencapsulated grape juice powders using black 'Isabel' grape peel pectin and application in jelly formulation with enhanced in vitro bioaccessibility of anthocyanins. J Food Sci 2024; 89:2067-2083. [PMID: 38411308 DOI: 10.1111/1750-3841.16999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
In this study, pigmented pectin (grape pectin, GP) was extracted from the peels of black Isabel grapes. This highly methoxylated GP was composed mainly of galacturonic acid, arabinose, and other neutral monosaccharides. Its red color was ascribed to the anthocyanin content, and the main contribution was from malvidin-3-O-glucoside. To improve the yield and color properties of spray-dried Isabel grape juice powders, maltodextrin (MD) was substituted with this colored GP. When 25% of MD was substituted with GP, the powder yield increased from 46.0% to 60.4%, but it decreased to 21% when the substitution was 40%. GP inclusion increased the encapsulation efficiency of total anthocyanin in powders from 55.70% to 88.66%. When this spray-dried grape juice powder containing GP was utilized in a jelly recipe (4%-10%), a higher level of inclusion yielded stronger and more brittle jellies. When the jellies containing varying amounts of GP were subjected to in vitro digestion, the formulation with a higher amount of GP yielded a higher recovery of anthocyanins. In addition to being utilized as a carrier agent for spray-drying applications, this pigmented GP can also be tailored for a variety of applications, such as the development of pH-sensitive edible films and functional beverage formulations.
Collapse
Affiliation(s)
- Ayse Karadag
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Kubra Ozkan
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Osman Sagdic
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
9
|
Castangia I, Fulgheri F, Perra M, Bacchetta G, Fancello L, Corrias F, Usach I, Peris JE, Manca ML, Manconi M. A Cocktail-Based Formula for the Design of Nanosized Cosmeceuticals as Skincare and Anti-Age Products. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2485. [PMID: 37686993 PMCID: PMC10489923 DOI: 10.3390/nano13172485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Nasco and Bovale grape pomace extracts, alone or in association, were loaded in nanoemulsions tailored for cosmetic application, using Kolliphor®RH40 (kolliphor) as the synthetic surfactant, Olivem®1000 (olivem) as the natural one, and lecithin as the cosurfactant. Pink transparent or milky dispersions, as a function of the used extract and surfactant, were obtained to be used as cosmeceutical serum or milk. The sizes of the nanoemulsion droplets were small (≈77 nm with kolliphor and ≈141 nm with olivem), homogenously dispersed (~0.24 with kolliphor and ~0.16 with olivem), highly negatively charged (≈-43 mV irrespective of the used surfactant) and their stability either on storage or under stressing conditions was affected by the used extract and surfactant. Formulations protected the extracts from the degradation caused by UV exposition, were biocompatible against keratinocytes, protected them against oxidative damages induced using hydrogen peroxide and inhibited the release of nitrite induced in macrophages using the lipopolysaccharide inflammatory stimulus. The overall results underlined the key role played by the composition of the formula to achieve a suitable cosmeceutical for skin care but even for the prevention of premature aging and chronic damages caused by the stressing conditions.
Collapse
Affiliation(s)
- Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Federica Fulgheri
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Matteo Perra
- Biomedical and Tissue Engineering Laboratory, Fundación de Investigación Hospital General Universitario, 46022 Valencia, Spain;
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Laura Fancello
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Francesco Corrias
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Iris Usach
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; (I.U.); (J.E.P.)
| | - Josè Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; (I.U.); (J.E.P.)
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| |
Collapse
|
10
|
Chamizo-González F, Estévez IG, Gordillo B, Manjón E, Escribano-Bailón MT, Heredia FJ, González-Miret ML. First insights into the binding mechanism and colour effect of the interaction of grape seed 11S globulin with malvidin 3-O-glucoside by fluorescence spectroscopy, differential colorimetry and molecular modelling. Food Chem 2023; 413:135591. [PMID: 36764161 DOI: 10.1016/j.foodchem.2023.135591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Recently, the search for alternative proteins endogenous to grapes to be used as wine colour protecting agents became an important research trend. In this study, the molecular interaction between the grape seed 11S globulin from winemaking by-product and malvidin-3-O-glucoside was investigated by fluorescence, differential colorimetry and molecular modelling. Fluorescence studies revealed the formation of grape seed protein- pigment complex whose KS was 8.5 × 104 M-1 and binding sites, n = 1.3. Malvidin-3-O-glucoside showed darker and more vivid bluish colour of in the presence of 11S globulin, suggesting the flavylium cation protection in a hydrophobic region of the protein. Docking analysis and molecular dynamics simulation indicated that malvidin-3-O-glucoside interacts mainly with the acidic subunit (40 kDa) of the 11S globulin monomer (60 kDa). An average of two hydrogen bonds and Van der Wall forces were the main interaction forces found for the protein-pigment complex, whose stability was confirmed by root-means-square deviation.
Collapse
Affiliation(s)
- Francisco Chamizo-González
- Food Colour & Quality Lab., Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Ignacio García Estévez
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| | - Belén Gordillo
- Food Colour & Quality Lab., Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Elvira Manjón
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| | - M T Escribano-Bailón
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| | - Francisco J Heredia
- Food Colour & Quality Lab., Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - M Lourdes González-Miret
- Food Colour & Quality Lab., Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
11
|
Wang Y, Yang C, Zhang J, Zhang L. Interaction of preheated whey protein isolate with rose anthocyanin extracts in beverage model system: Influence on color stability, astringency and mechanism. Food Chem 2023; 412:135507. [PMID: 36716623 DOI: 10.1016/j.foodchem.2023.135507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Preheating proteins have the potential to improve anthocyanin stability. Our aim was to investigate the effect of preheated whey protein isolate (WPI) on the color stability and astringency of the beverage model system in the presence of rose anthocyanin extracts (RAEs), and to explore the mechanism of interaction between preheated WPI and RAEs. The secondary structure, particle size and transparency of WPI were obviously changed by preheating. WPI preheated at 100°C (WPI100) could effectively improve the color stability of RAEs in the beverage model system. Importantly, the WPI100-RAEs in the beverage model system exhibited the smallest particle size and the weakest astringency effect. In addition, different preheated WPIs could interact with RAEs non-covalently, and the interaction forces are hydrogen bonding and van der Waals forces, among which WPI100 had the strongest binding ability to RAEs. These results will provide a new insight into the development of protein-anthocyanin beverages.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Zhang
- The Food College of Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Food College of Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
12
|
Cao Y, Zhao B, Li Y, Gao H, Xia Q, Fang Z. Investigation of the difference in color enhancement effect on cyanidin-3-O-glucoside by phenolic acids and the interaction mechanism. Food Chem 2023; 411:135409. [PMID: 36682168 DOI: 10.1016/j.foodchem.2023.135409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Co-pigmentation effect of phenolic acids on cyanidin-3-O-glucoside (C3G) and the mechanisms were investigated. Sinapic acid (SIA), ferulic acid (FA), p-coumaric acid (p-CA) and syringic acid (SYA) significantly enhanced C3G stability (P < 0.05), whereas vanillic acid (VA) and gallic acid (GA) showed no influence (P > 0.05). Among these phenolic acids, SIA and FA had higher binding coefficient with C3G (48.83 and 43.38), reduced degradation rate constant by 40.0 ∼ 50.0 %, prolonged half-life by 74.6 ∼ 94.7 % at 323 K, and significantly inhibited C3G hydration reaction (pKh = 2.87 and 2.80, P < 0.05). Molecular docking revealed that C3G and co-pigments were connected by hydrogen bond and π-π stacking interaction. Hydroxycinnamic acids of SIA, FA and p-CA bound with ring B and ring C of C3G, while hydroxybenzoic acids of SYA, VA and GA hardly interacted with ring C. Generally, the protection effect of hydroxycinnamic acids on C3G was better than that of hydroxybenzoic acids, exhibiting stronger hyperchromic effect.
Collapse
Affiliation(s)
- Yan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Baofu Zhao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qile Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Vic 3010, Australia
| |
Collapse
|
13
|
Xing Y, Wang K, Zhang M, Law CL, Lei H, Wang J, Xu H. Pectin-interactions and the digestive stability of anthocyanins in thermal and non-thermal processed strawberry pulp. Food Chem 2023; 424:136456. [PMID: 37267648 DOI: 10.1016/j.foodchem.2023.136456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
This study investigated the digestive stability of anthocyanins (ACNs) and their interaction with three pectin fractions-water-soluble pectin (WSP), cyclohexanetrans-1,2-diamine tetra-acetic acid-soluble pectin (CSP), and sodium carbonate-soluble pectin (NSP)-in strawberry pulp processed by pasteurization (PS), ultrasound (US), electron beam (EB) irradiation, and high pressure (HP). Compared with the control group, the ACNs content increased to the highest level (312.89 mg/mL), but the retention rate of ACNs in the simulated intestine decreased significantly after US treatment. The monosaccharide compositions indicated that the WSP and CSP possessed more homogalacturonan (HG) domains than the NSP, which contains more rhamngalacturonan-I (RG-I) domains. The microstructure of US-treated pectin was damaged and fragmented. Comprehensive analysis showed that the retention rate of ACNs was closely related to the pectin structure, primarily reflected by the degree of linearity and the integrity of structure. These results revealed the structure-activity relationship between ACNs and pectin during pulp processing.
Collapse
Affiliation(s)
- Ying Xing
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Life Science, Yuncheng University, Yuncheng, Shanxi 044000, China
| | - Kunhua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chung-Lim Law
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia Campus, Selangor, Malaysia
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Zhai HY, Li SY, Zhao X, Lan YB, Zhang XK, Shi Y, Duan CQ. The compositional characteristics, influencing factors, effects on wine quality and relevant analytical methods of wine polysaccharides: a review. Food Chem 2022; 403:134467. [DOI: 10.1016/j.foodchem.2022.134467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|
15
|
Zang Z, Tang S, Li Z, Chou S, Shu C, Chen Y, Chen W, Yang S, Yang Y, Tian J, Li B. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides. Compr Rev Food Sci Food Saf 2022; 21:4378-4401. [PMID: 36018502 DOI: 10.1111/1541-4337.13026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Abstract
The health benefits of anthocyanins are compromised by their chemical instability and susceptibility to external stress. Researchers found that the interaction between anthocyanins and macromolecular components such as proteins and polysaccharides substantially determines the stability of anthocyanins during food processing and storage. The topic thus has attracted much attention in recent years. This review underlines the new insights gained in our current study of physical and chemical properties and functional properties in complex food systems. It examines the interaction between anthocyanins and food proteins or polysaccharides by focusing on the "structure-stability" relationship. Furthermore, multispectral and molecular computing simulations are used as the chief instruments to explore the interaction's mechanism. During processing and storage, the stability of anthocyanins is generally influenced by the adverse characteristics of food and beverage, including temperature, light, oxygen, enzymes, pH. While the action modes and types between protein/polysaccharide and anthocyanins mainly depend on their structures, the noncovalent interaction between them is the key intermolecular force that increases the stability of anthocyanins. Our goal is to provide the latest understanding of the stability of anthocyanins under food processing conditions and further improve their utilization in food industries. Practical Application: This review provides support for the steady-state protection of active substances.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
16
|
Wang S, Zhang X, Ai J, Yue Z, Wang Y, Bao B, Tian L, Bai W. Interaction between black mulberry pectin-rich fractions and cyanidin-3-O-glucoside under in vitro digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Canalejo D, Guadalupe Z, Martínez-Lapuente L, Ayestarán B, Pérez-Magariño S, Doco T. Characterization of polysaccharide extracts recovered from different grape and winemaking products. Food Res Int 2022; 157:111480. [DOI: 10.1016/j.foodres.2022.111480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
|
18
|
Weber F. Noncovalent Polyphenol-Macromolecule Interactions and Their Effects on the Sensory Properties of Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:72-78. [PMID: 34962801 DOI: 10.1021/acs.jafc.1c05873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noncovalent interactions between food macromolecules like proteins and polysaccharides with polyphenols have a broad and extensive impact on the sensory properties of food. Because of the structural diversity of the interaction partners and the corresponding variety of binding mechanisms, the determination of the distinct sensorial consequences and the correlation with molecular features is complicated. Well-documented examples include the attenuation of astringency elicited by tannins in the presence of polysaccharides or the precipitation of anthocyanins by cell-wall polysaccharides during fruit juice processing. The proposed mechanism suggests that there exist additional intricate interactions including ternary complexes. The analytical characterization of the formed complexes is difficult due to the reversible nature of these interactions.
Collapse
Affiliation(s)
- Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| |
Collapse
|