1
|
Yi H, Yao J, Chen Y, Wang X, Guo J, Pan S. Effect of sodium alginate and egg white protein combinations on the functional properties and structures of chicken myofibrillar protein. Food Res Int 2024; 196:115071. [PMID: 39614498 DOI: 10.1016/j.foodres.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
This research explored the influence of varying sodium alginate (SA) and egg white protein (EWP) ratios (1:2, 2:3, 1:1, 3:2, 2:1, v/v) on the structural and gel characteristics of chicken myofibrillar protein (MP) gels. The findings showed that containing SA and EWP significantly improved (P < 0.05) the water-holding capacity (up to 95.02 %) and whiteness of MP gels. With a 2:1 ratio of SA to EWP, the absolute value of zeta potential reached 17.3 mV, and the lowest cooking loss (16.98 %) was achieved, accompanied by a reduction in turbidity. The MP formulation incorporating a 2:1 ratio of SA to EWP demonstrated the highest hardness, chewiness, cohesiveness, and springiness (P < 0.05), as confirmed by the rheological analysis conducted under temperature sweep mode. As the SA content increased, there was a notable enhancement in both the storage modulus (G') and loss modulus (G″) of MP gel, indicating a strengthened cross-linking effect within the MP protein gel. FTIR and SEM analyses revealed a transformation from α-helix to β-sheet and the formation of a more uniform and dense gel structure due to non-covalent interactions. Overall, MP incorporating SA/EWP at a 2:1 ratio (v/v) has preferable gel properties. This study could provide a theoretical reference to enhance the gel attributes of chicken meat products in the industry through the utilization of SA and EWP.
Collapse
Affiliation(s)
- Huan Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| | - Jieqiong Yao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| | - Yifeng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| | - Xinyue Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| | - Jiahui Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| |
Collapse
|
2
|
Boostani S, Sarabandi K, Tarhan O, Rezaei A, Assadpour E, Rostamabadi H, Falsafi SR, Tan C, Zhang F, Jafari SM. Multiple Pickering emulsions stabilized by food-grade particles as innovative delivery systems for bioactive compounds. Adv Colloid Interface Sci 2024; 328:103174. [PMID: 38728772 DOI: 10.1016/j.cis.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The most common carrier for encapsulation of bioactive components is still simple emulsion. Recently, bio-based novel emulsion systems such as multiple emulsions (MEs) and Pickering emulsions (PEs) have been introduced as innovative colloidal delivery systems for encapsulation and controlled release of bioactive compounds. Multiple PEs (MPEs), which carries both benefit of MEs and PEs could be fabricated by relatively scalable and simple operations. In comparison with costly synthetic surfactants and inorganic particles which are widely used for stabilization of both MEs and PEs, MPEs stabilized by food-grade particles, while having health-promoting aspects, are able to host the "clean label" and "green label" attributes. Nevertheless, in achieving qualified techno-functional attributes and encapsulation properties, the selection of suitable materials is a crucial step in the construction of such complex systems. Current review takes a cue from both MEs and PEs emulsification techniques to grant a robust background for designing various MPEs. Herein, various fabrication methods of MEs and PEs are described comprehensively in a physical viewpoint in order to find key conception of successful formulation of MPEs. This review also highlights the link between the underlying aspects and exemplified specimens of evidence which grant insights into the rational design of MPEs through food-based ingredients to introduces MPEs as novel colloidal/functional materials. Their utilization for encapsulation of bioactive compounds is discussed as well. In the last part, instability behavior of MPEs under various conditions will be discussed. In sum, this review aims to gain researchers who work with food-based components, basics of innovative design of MPEs.
Collapse
Affiliation(s)
- Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ozgur Tarhan
- Food Engineering Department, Engineering Faculty, Uşak University, 1 Eylul Campus, Uşak 64100, Türkiye
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Diao X, Ke W, Li S, Mao X, Shan K, Zhang M, Zhao D, Li C. Effect of wheat aleurone on lard emulsions during in vitro digestion. Food Chem 2024; 435:137530. [PMID: 37757681 DOI: 10.1016/j.foodchem.2023.137530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Dietary wheat aleurone has been shown to affect lipid metabolism and reduce the incidence of obesity. However, the underlying mechanisms are not fully understood. This work aimed to investigate how whole wheat aleurone affects lipolysis during the whole digestion process in vitro. The physicochemical and microstructural changes and the lipolysis kinetics of different lard emulsion mixtures were determined. The results showed that the lipolysis rate and degree are inversely proportional to the amount of wheat aleurone. Wheat aleurone and flour promoted the aggregation and flocculation of lipid droplets by increasing the viscosity. More importantly, the dietary fibers released from aleurone digestion can reduced the binding of lipase to lipid droplets by adsorbing lipid droplets to increase the steric hindrance effect. These results provide a better understanding of how whole grains affect lipid digestibility and will further contribute to the development of functional foods and the improvement of individual health.
Collapse
Affiliation(s)
- Xinyue Diao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixin Ke
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinrui Mao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Shan
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China; Key Laboratory of Meat Processing, MARA, Nanjing 210095, China; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Hu S, Li W, Cai Z, Tang C, Li B, Liu S, Li Y. Research progress on chitin/chitosan-based emulsion delivery systems and their application in lipid digestion regulation. Crit Rev Food Sci Nutr 2023; 64:13275-13297. [PMID: 37811646 DOI: 10.1080/10408398.2023.2264392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Excessive lipid intake is linked to an elevated risk of health problems. However, reducing lipid contents may influence food structure and flavor. Some alternatives are needed to control the lipid absorption. Emulsions are common carriers for lipids, which can control the hydrolysis and absorption of lipids. Chitin (Ch) and chitosan (CS) are natural polysaccharides with good biodegradability, biocompatibility, and unique cationic properties. They have been reported to be able to delay lipolysis, which can be regarded as one of the most promising agents that regulates lipid digestion (LiD). The application of Ch/CS and their derivatives in emulsions are summarized in this review with a focus on their performances and mechanisms for LiD regulation, aiming to provide theoretical guidance for the development of novel Ch/CS emulsions, and the regulation of LiD. A reasonable design of emulsion interface can provide its resistance to the external environment and then control LiD. The properties of emulsion interface are the key factors affecting LiD. Therefore, systematic study on the relationship between Ch/CS-based emulsion structure and LiD can not only instruct the reasonable design of emulsion interface to accurately regulate LiD, but also provide scientific guidelines for applying Ch/CS in functional food, medicine and other fields.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenbo Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Cai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Cuie Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
5
|
Zhang M, Zuo Z, Zhang X, Wang L. Food biopolymer behaviors in the digestive tract: implications for nutrient delivery. Crit Rev Food Sci Nutr 2023; 64:8709-8727. [PMID: 37216487 DOI: 10.1080/10408398.2023.2202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biopolymers are prevalent in both natural and processed foods, serving as thickeners, emulsifiers, and stabilizers. Although specific biopolymers are known to affect digestion, the mechanisms behind their influence on the nutrient absorption and bioavailability in processed foods are not yet fully understood. The aim of this review is to elucidate the complex interplay between biopolymers and their behavior in vivo, and to provide insights into the possible physiological consequences of their consumption. The colloidization process of biopolymer in various phases of digestion was analyzed and its impact on nutrition absorption and gastrointestinal tract was summarized. Furthermore, the review discusses the methodologies used to assess colloidization and emphasizes the need for more realistic models to overcome challenges in practical applications. By controlling macronutrient bioavailability using biopolymers, it is possible to enhance health benefits, such as improving gut health, aiding in weight management, and regulating blood sugar levels. The physiological effect of extracted biopolymers utilized in modern food structuring technology cannot be predicted solely based on their inherent functionality. It is essential to account for factors such as their initial consuming state and interactions with other food components to better understand the potential health benefits of biopolymers.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhongyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Li J, Zhou Y, Zhang J, Cui L, Lu H, Zhu Y, Zhao Y, Fan S, Xiao X. Barley β-glucan inhibits digestion of soybean oil in vitro and lipid-lowering effects of digested products in cell co-culture model. Food Res Int 2023; 164:112378. [PMID: 36737963 DOI: 10.1016/j.foodres.2022.112378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
The effect of barley β-glucan on soybean oil digestion characteristics before and after fermentation was studied in an in vitro-simulated gastrointestinal digestion model. The addition of barley β-glucan made the system more unstable, the particle size increased significantly, and confocal laser imaging showed that it was easier to form agglomerates. The addition of barley β-glucan increased the proportion of unsaturated fatty acids in digestion products, and reduced digestibility of soybean oil. In a co-culture model of Caco-2/HT29 and HepG2 cells, the effects of digestive products of soybean oil and barley β-glucan before and after fermentation on lipid metabolism in HepG2 cells were investigated. The results showed that adding only soybean oil digestion products significantly increased triglycerides (TG) content and lipid accumulation in basolateral HepG2 cells. When fermented barley β-glucan was added, lipid deposition was significantly decreased, and the lipid-lowering activity was better than that of unfermented barley β-glucan.
Collapse
Affiliation(s)
- Jiaying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haina Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Du Q, Wu Y, Zeng X, Tu M, Wu Z, Liu J, Pan D, Ding Y. Competitive binding of maltodextrin and pectin at the interface of whey protein hydrolyzate-based fish oil emulsion under high temperature sterilization: Effects on storage stability and in vitro digestion. Food Res Int 2023; 164:112368. [PMID: 36737955 DOI: 10.1016/j.foodres.2022.112368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Whey protein hydrolysate (WPH), maltodextrin (MD), low methoxy pectin (LMP) and high methoxy pectin (HMP) were used to study the interface binding under high temperature sterilization conditions (121 °C, 15 min). The effect of competitive binding of MD and pectin with interface protein on the storage stability and gastrointestinal fate of fish oil emulsion was studied. The low-molecular-weight MD and the interface protein undergo a wide range of covalent binding through the Maillard reaction, while a small amount of high-molecular-weight pectin can form a protective shell with the interface protein through electrostatic interaction to inhibit the covalent reaction of MD, which was called competitive binding. However, due to the bridging and depletion flocculation of pectin, the emulsification stability of fish oil emulsion reduced. After 13 days of storage, compared with the particle size of the WPH fish oil emulsion (459.18 nm), the fish oil emulsion added with LMP and HMP reached 693.58 nm and 838.54 nm, respectively. In vitro digestion proved that WPH fish oil emulsion flocculated rapidly in the stomach (1.76 μm), while WPH-MD and WPH-MD-pectin fish oil emulsions flocculated slightly (less than800 nm). WPH-MD-pectin delayed digestion in the gastrointestinal tract, and HMP exhibited a better slow-release effect. This study provides reference for the design of multi-component functional drinks and other bioactive ingredient delivery system.
Collapse
Affiliation(s)
- Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Yang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
8
|
Insight into interfacial adsorption behavior of high-density lipoprotein hydrolysates regulated by carboxymethyl dextrin and in vitro digestibility of curcumin loaded high internal phase emulsions. Food Chem 2023; 400:134006. [DOI: 10.1016/j.foodchem.2022.134006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
9
|
Liu L, Chen M, Coldea TE, Yang H, Zhao H. Emulsifying properties of arabinoxylans derived from brewers’ spent grain by ultrasound-assisted extraction: structural and functional properties correlation. CELLULOSE 2023; 30:359-372. [DOI: 10.1007/s10570-022-04912-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/22/2022] [Indexed: 07/02/2024]
|
10
|
Jin Y, Wilde PJ, Li C, Jin W, Han J, Liu W. Impact of food viscosity on in vitro gastric emptying using dynamic and semi-dynamic models. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Effect of surface charge density of bacterial cellulose nanofibrils on the properties of O/W Pickering emulsions co-stabilized with gelatin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Tunable oleosome-based oleogels: Influence of polysaccharide type for polymer bridging-based structuring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Facile isolation of cellulose nanofibrils from agro-processing residues and its improved stabilization effect on gelatin emulsion. Int J Biol Macromol 2022; 216:272-281. [DOI: 10.1016/j.ijbiomac.2022.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/18/2022]
|
14
|
Azeredo HM, Tonon RV, McClements DJ. Designing healthier foods: Reducing the content or digestibility of key nutrients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Mendez D, Fabra M, Martínez-Abad A, Μartínez-Sanz Μ, Gorria M, López-Rubio A. Understanding the different emulsification mechanisms of pectin: Comparison between watermelon rind and two commercial pectin sources. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|