1
|
Hu T, Zhang M, Wei X, Xu Z, Li D, Deng J, Li Y, Zhang Y, Lin X, Wang J. Efficient Pb(II) removal from contaminated soils by recyclable, robust lignosulfonate/polyacrylamide double-network hydrogels embedded with Fe 2O 3 via one-pot synthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135712. [PMID: 39236531 DOI: 10.1016/j.jhazmat.2024.135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Soil heavy metal removal strategies are increasingly valued for effectively reducing contamination and preventing secondary pollution. In this work, a double network hydrogel (Fe2O3@LH), consisting of lignosulfonate (LS) and polyacrylamide with embedded Fe2O3 nanoparticles, was synthesized successfully via a one-pot method and subsequently applied to adsorb lead (Pb) from contaminated soil. Incorporating Fe2O3 into the hydrogel enhances the adsorption capacity of Fe2O3@LH for Pb(II). The Fe2O3@LH hydrogel demonstrates a maximum Pb(II) adsorption capacity of 143.11 mg g-1, with Pb(II) removal mechanisms involving electrostatic adsorption, cation exchange, precipitation reactions, and the formation of coordination complexes, achieving a 22.3 % maximum removal efficiency in soil cultivation experiments. Additionally, the application of Fe2O3@LH markedly reduces the concentrations of cadmium (Cd) and arsenic (As) in the soil, meanwhile enhances the levels of total nitrogen (TN), soil organic matter (SOM), and cation exchange capacity (CEC) by 23.1 %, 10.6 %, and 16.9 %, respectively. Following 90 days of continuous application in the soil, the recovery rate of Fe2O3@LH remains above 75 %. The toxicity assay using zebrafish larvae indicates that Fe2O3@LH demonstrates good biosafety. This study demonstrates the considerable potential of Fe2O3@LH hydrogel for practical application in reducing Pb(II) levels in contaminated soil.
Collapse
Affiliation(s)
- Tian Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingkai Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiujiao Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Deyun Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jianbin Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Yulong Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Xueming Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jinjin Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China.
| |
Collapse
|
2
|
Xia R, Liu W, Nghiem LD, Cao D, Li Y, Li G, Luo W. A novel chitosan and polyferric sulfate composite coagulant for biogas slurry pretreatment by simultaneous flocculation and floatation: Performance and underlying mechanisms. WATER RESEARCH 2024; 258:121781. [PMID: 38761597 DOI: 10.1016/j.watres.2024.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Biogas slurry from anaerobic digestion is rich in nutrients but has not been fully utilized due to a high content of suspended solids (SS) causing clogging during agricultural irrigation. This study aimed to evaluate the performance of a novel chitosan and polyferric sulfate (CTS-PFS) composite coagulant for simultaneous flocculation and floatation to enhance SS removal while preserving nutrients in biogas slurry. Orthogonal method was used for experimental design to determine the optimal synthesis and operational conditions of CTS-PFS. Results show that CTS-PFS outperformed individual CTS and PFS coagulant in terms of SS removal and nutrient (nitrogen, phosphorus, and potassium) preservation. Compared to individual CTS and PFS coagulation, the combination of CTS and PFS at the mass ratio of 1:6 showed significantly higher performance by 41.5 % increase in SS removal and 5.2 % reduction in nutrient loss. The improved performance of CTS-PFS was attributed to its formation of polynuclear hydroxyl complexes with ferric oxide groups (e.g. Fe-OH, Fe-O-Fe, Fe-OH-Fe and COO-Fe) to strengthen charge neutralization and adsorption bridging. Data from this study further confirm that CTS-PFS enhanced the removal of small suspended particles and dissolved organic matter in the molecular weight range of 0.4-2.0 kDa and preserved ammonia and potassium better in biogas slurry. Bubbles were generated as hydrogen ions from coagulant hydrolysis interacted with bicarbonate and carbonate in biogas slurry for removing the produced flocs by floatation. Floc flotation was more effective in CTS-PFS coagulation due to the significant production of uniform bubbles, evidenced by the reduction in the viscosity of biogas slurry.
Collapse
Affiliation(s)
- Ruohan Xia
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wancen Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dingge Cao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Tseytlin IN, Antrim AK, Gong P. Nanoparticles for Mitigation of Harmful Cyanobacterial Blooms. Toxins (Basel) 2024; 16:41. [PMID: 38251256 PMCID: PMC10819728 DOI: 10.3390/toxins16010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
With the rapid advancement of nanotechnology and its widespread applications, increasing amounts of manufactured and natural nanoparticles (NPs) have been tested for their potential utilization in treating harmful cyanobacterial blooms (HCBs). NPs can be used as a photocatalyst, algaecide, adsorbent, flocculant, or coagulant. The primary mechanisms explored for NPs to mitigate HCBs include photocatalysis, metal ion-induced cytotoxicity, physical disruption of the cell membrane, light-shielding, flocculation/coagulation/sedimentation of cyanobacterial cells, and the removal of phosphorus (P) and cyanotoxins from bloom water by adsorption. As an emerging and promising chemical/physical approach for HCB mitigation, versatile NP-based technologies offer great advantages, such as being environmentally benign, cost-effective, highly efficient, recyclable, and adaptable. The challenges we face include cost reduction, scalability, and impacts on non-target species co-inhabiting in the same environment. Further efforts are required to scale up to real-world operations through developing more efficient, recoverable, reusable, and deployable NP-based lattices or materials that are adaptable to bloom events in different water bodies of different sizes, such as reservoirs, lakes, rivers, and marine environments.
Collapse
Affiliation(s)
- Ilana N. Tseytlin
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA;
- School of Pharmacy, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261, USA
| | - Anna K. Antrim
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA;
| | - Ping Gong
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA;
| |
Collapse
|
4
|
Song J, Xu Z, Chen Y, Guo J. Nanoparticles, an Emerging Control Method for Harmful Algal Blooms: Current Technologies, Challenges, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2384. [PMID: 37630969 PMCID: PMC10457966 DOI: 10.3390/nano13162384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Harmful algal blooms (HABs) are a global concern because they harm aquatic ecosystems and pose a risk to human health. Various physical, chemical, and biological approaches have been explored to control HABs. However, these methods have limitations in terms of cost, environmental impact, and effectiveness, particularly for large water bodies. Recently, the use of nanoparticles has emerged as a promising strategy for controlling HABs. Briefly, nanoparticles can act as anti-algae agents via several mechanisms, including photocatalysis, flocculation, oxidation, adsorption, and nutrient recovery. Compared with traditional methods, nanoparticle-based approaches offer advantages in terms of environmental friendliness, effectiveness, and specificity. However, the challenges and risks associated with nanoparticles, such as their toxicity and ecological impact, must be considered. In this review, we summarize recent research progress concerning the use of nanoparticles to control HABs, compare the advantages and disadvantages of different types of nanoparticles, discuss the factors influencing their effectiveness and environmental impact, and suggest future directions for research and development in this field. Additionally, we explore the causes of algal blooms, their harmful effects, and various treatment methods, including restricting eutrophication, biological control, and disrupting living conditions. The potential of photocatalysis for generating reactive oxygen species and nutrient control methods using nanomaterials are also discussed in detail. Moreover, the application of flocculants/coagulants for algal removal is highlighted, along with the challenges and potential solutions associated with their use. This comprehensive overview aims to contribute to the development of efficient and sustainable strategies for controlling HAB control.
Collapse
Affiliation(s)
| | | | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (Z.X.)
| | - Jiaqing Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (Z.X.)
| |
Collapse
|
5
|
Che M, Shan C, Huang R, Cui M, Qi W, Klemeš JJ, Su R. A rapid removal of Phaeocystis globosa from seawater by peroxymonosulfate enhanced cellulose nanocrystals coagulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115318. [PMID: 37531927 DOI: 10.1016/j.ecoenv.2023.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Cellulose nanocrystals (CNC) are recognized as promising bio-based flocculants for controlling harmful algal blooms (HABs). Due to the charge shielding effect in seawater and the strong mobility of algae cells, CNC can't effectively remove Phaeocystis globosa from seawater. To solve this problem, peroxymonosulfate (PMS) was used to enhance the coagulation of CNC for rapidly removal of P. globosa. The results showed that 91.7% of Chl-a, 95.2% of OD680, and 97.2% of turbidity of P. globosa were reduced within 3 h with the use of 200 mg L-1 of CNC and 20 mg L-1 of PMS. The removal of P. globosa was consisted of inactivation and flocculation. Notably, electron paramagnetic resonance (EPR) spectrums and quenching experiments revealed that the inactivation of P. globosa was dominated by PMS oxidation and 1O2. Subsequently, CNC entrained inactivated algal cells to settle to the bottom to achieve efficient removal of P. globosa. The content of total organic carbon (TOC) and chemical oxygen demand (COD) decreased significantly, indicating that a low emission risk of algal cell effluent was produced in the CNC-PMS system. In view of the excellent performance on P. globosa removal, we believe that the CNC-PMS system has great potential for HABs treatments.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Cancan Shan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renliang Huang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China; Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China.
| |
Collapse
|
6
|
A novel approach for microalgal cell disruption and bioproducts extraction using non-thermal atmospheric plasma (NTAP) technology and chitosan flocculation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Zhao L, Hu M, Muslim H, Hou T, Bian B, Yang Z, Yang W, Zhang L. Co-utilization of lake sediment and blue-green algae for porous lightweight aggregate (ceramsite) production. CHEMOSPHERE 2022; 287:132145. [PMID: 34500330 DOI: 10.1016/j.chemosphere.2021.132145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Lake sediment and algal sludge with large output posed significant environmental risks. In this work, an idea of co-utilization of both solid wastes for the production of ceramsite (a sort of porous lightweight aggregates as building materials) was proposed and validated for the first time. The treatment process contained a dewatering step by a flocculation-pressure filtration method, and a sintered ceramsite preparation step. Effects of flocculant type and dosage on the dewatering performance were studied in the first step. An environmental-friendly amphoteric starch flocculant with a dosage of 12 mg/(g dried sample) was found to achieve the best dewatering performance. Effects of raw material mass ratio, sintering temperature and time in the second step were investigated. Under the optimal conditions (60 wt% of dewatered sediment; 20 wt% of dewatered algal sludge; 20 wt% of additives (fly ash: calcium oxide: kaolin = 2:1:2); sintering temperature: 1100 °C; time: 35 min), the obtained ceramsite met the Chinese National Standard as a qualified building material, with reliable environmental safety according to the leaching results for both heavy metals and microcystins. Both environmental and economic benefits of the proposed treatment were assessed. The process completely followed the rules of "reduction, harmlessness and resource utilization" for solid waste treatment and disposal; Meanwhile, the profit of the proposed ceramsite production could be more than 2.3 US dollar/m3. The co-utilization method in this work acted as a good example for the comprehensive management of solid wastes in water-rich areas.
Collapse
Affiliation(s)
- Lina Zhao
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Min Hu
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Halimi Muslim
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Tianyang Hou
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Bo Bian
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Zhen Yang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China.
| | - Weiben Yang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| | - Limin Zhang
- School of Chemistry and Materials Science, School of Environment, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
| |
Collapse
|