1
|
Zhang N, Wang Z, Shao J, Xu Z, Liu Y, Xun W, Miao Y, Shen Q, Zhang R. Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture. Microb Biotechnol 2023; 16:2250-2263. [PMID: 37837627 PMCID: PMC10686189 DOI: 10.1111/1751-7915.14348] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023] Open
Abstract
Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe-plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The "cry for help" mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere-derived prebiotics, were proposed.
Collapse
Affiliation(s)
- Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijingChina
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic WastesNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
2
|
Jing G, Wenjun G, Yi W, Kepan X, Wen L, Tingting H, Zhiqiang C. Enhancing Enzyme Activity and Thermostability of Bacillus amyloliquefaciens Chitosanase BaCsn46A Through Saturation Mutagenesis at Ser196. Curr Microbiol 2023; 80:180. [PMID: 37046080 DOI: 10.1007/s00284-023-03281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chitosanase plays an important role in chitooligosaccharides (COS) production. We found that the chitosanase (BaCsn46A) of Bacillus amyloliquefacien was a good candidate for chitosan hydrolysis of COS. In order to further improve the enzyme properties of BaCsn46A, the S196 located near the active center was found to be a critical site impacts on enzyme properties by sequence alignment analysis. Herein, saturation mutation was carried out to study role of 196 site on BaCsn46A catalytic function. Compared with WT, the specific enzyme activity of S196A increased by 118.79%, and the thermostability of S196A was much higher than WT. In addition, we found that the enzyme activity of S196P was 2.41% of that of WT, indicating that the type of amino acid in 196 site could significant affect the catalytic activity and thermostability of BaCsn46A. After molecular docking analysis we found that the increase in hydrogen bonds and decrease in unfavorable bonds interacting with the substrate were the main reason for the change of enzyme properties which is valuable for future studies on Bacillus species chitosanase.
Collapse
Affiliation(s)
- Guo Jing
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Gao Wenjun
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Wang Yi
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Xu Kepan
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Luo Wen
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Hong Tingting
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Cai Zhiqiang
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
3
|
Kang BR, Park JS, Ryu GR, Jung WJ, Choi JS, Shin HM. Effect of Chitosan Coating for Efficient Encapsulation and Improved Stability under Loading Preparation and Storage Conditions of Bacillus Lipopeptides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4189. [PMID: 36500812 PMCID: PMC9737214 DOI: 10.3390/nano12234189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This study aims to evaluate the effect of chitosan coating on the formation and properties of Bacillus cyclic lipopeptide (CLP)-loaded liposomes. A nanoencapsulation strategy for a chitosan-coated liposomal system using lecithin phospholipids for the entrapment of antibiotic CLP prepared from Bacillus subtilis KB21 was developed. The produced chitosan-coated CLP liposome had mean size in the range of 118.47-121.67 nm. Transmission electron microscopy showed the spherical-shaped vesicles. Fourier transform infrared spectroscopy findings indicated the successful coating of the produced CLP-loaded liposomes by the used chitosan. Liposomes coated with 0.2% and 0.5% chitosan concentration decreased the surface tension by 7.3-12.1%, respectively, and increased the CLP content by 15.1-27.0%, respectively, compared to the uncoating liposomes. The coated concentration of chitosan influenced their CLP loading encapsulation efficiency and release kinetics. The physicochemical results of the dynamic light scattering, CLP capture efficiency and long-term storage capacity of nanocapsules increased with chitosan coating concentration. Furthermore, the chitosan-coated liposomes exhibited a significant enhancement in the stability of CLP loading liposomes. These results may suggest the potential application of chitosan-coated liposomes as a carrier of antibiotics in the development of the functional platform.
Collapse
Affiliation(s)
- Beom Ryong Kang
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joon Seong Park
- Gwangju Metropolitan City Agricultural Extension Center, Gwangju Metropolitan City 61945, Republic of Korea
| | - Gwang Rok Ryu
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woo-Jin Jung
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun-Seok Choi
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye-Min Shin
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Xu Y, Li L, Cao S, Zhu B, Yao Z. An updated comprehensive review of advances on structural features, catalytic mechanisms, modification methods and applications of chitosanases. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Target Mechanism of Iturinic Lipopeptide on Differential Expression Patterns of Defense-Related Genes against Colletotrichum acutatum in Pepper. PLANTS 2022; 11:plants11091267. [PMID: 35567268 PMCID: PMC9102045 DOI: 10.3390/plants11091267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022]
Abstract
Bacillus subtilis KB21 is an isolate with broad spectrum antifungal activity against plant pathogenic fungi. Our aim was to produce and purify antifungal lipopeptides via fermentation using B. subtilis KB21 and verify their antifungal mechanism against pepper anthracnose. When the KB21 strain was cultured in tryptic soy broth medium, the antifungal activity against pepper anthracnose correlated with biosurfactant production. However, there was no antifungal activity when cultured in Luria-Bertani medium. KB21 filtrates showed the highest degree of inhibition of mycelia (91.1%) and spore germination (98.9%) of Colletotrichum acutatum via increases in the biosurfactant levels. Using liquid chromatography-mass spectrometry (LC-MS) and LC-tandem MS (LC-MS/MS) analyses, the component with antifungal activity in the fermentation medium of the KB21 strain was determined to be the cyclic lipopeptide (CLP) antibiotic, iturin A. When the iturin fractions were applied to pepper fruits inoculated with conidia of C. acutatum, the lesion diameter and hyphal growth on the fruit were significantly suppressed. In addition, iturin CLP elevated the gene expression of PAL, LOX, and GLU in the treatments both with and without following fungal pathogens. Overall, the results of this study show that iturin CLPs from B. subtilis KB21 may be potential biological control agents for plant fungal diseases.
Collapse
|