1
|
Eluppai Asthagiri Kumaraswamy N, Jayaramamurthy S, Martin CA, Srinivasan B. Unlocking the potential of beta-glucans: a comprehensive review from synthesis to drug delivery carrier potency. Drug Deliv Transl Res 2025; 15:483-507. [PMID: 39120791 DOI: 10.1007/s13346-024-01694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Modernization and lifestyle changes have resulted in a number of diseases, including cancer, that require complicated and thorough treatments. One of the most important therapies is the administration of antibiotics and medicines. This is known as chemotherapy for cancer, and it is a regularly utilised treatment plan in which the medications used have negative side effects. This has resulted in extensive research on materials capable of delivering pharmaceuticals to particular targets over an extended period of time. Biopolymers have often been preferred as effective drug delivery carriers. Of these, β-glucan, a natural polysaccharide, has not been extensively studied as a drug delivery carrier, despite its unique properties. This review discusses the sources, extraction techniques, structures, and characteristics of β-glucan to provide an overview. Furthermore, the different methods employed to encapsulate drugs into β-glucan and its role as an efficient drug, SiRNA and Plasmid DNA carrier have been elaborated in this article. The capacity of β-glucan-based to specifically target and alter tumour-associated macrophages, inducing an immune response ultimately resulting in tumour suppression has been elaborated. Finally, this study aims to stimulate further research on β-glucan by thoroughly describing its many characteristics and demonstrating its effectiveness as a drug delivery vehicle.
Collapse
Affiliation(s)
| | - Sivasankari Jayaramamurthy
- Department of Physics, B S Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Catherine Ann Martin
- Dr. Rela Institute and Medical Centre, National Foundation for Liver Research, Chromepet, Chennai, 600044, India
| | - Baskar Srinivasan
- Department of Physics, Easwari Engineering College, Ramapuram, Chennai, 600089, India
| |
Collapse
|
2
|
Wang S, Nie F, Lin Z, Cao R, Xu J, Guo Y. Construction of an Innovative Nanogel and Its Applications for Achieving Chemo-Immunotherapy of Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59895-59906. [PMID: 39462999 DOI: 10.1021/acsami.4c13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Malignant tumors, also known as cancers, are a global public health problem. Nanogels are promising carriers for the delivery of anticancer medicines. Therefore, based on the unique microenvironment of tumor cells and the advantages of nanogels, a simple and economical one-pot synthesis method was designed to construct natural polysaccharide-based redox-responsive nanogels (LDD NGs). The enhanced permeability and retention (EPR) effect enriched LDD NGs in tumor cells, which then rapidly collapsed and released the natural antitumor drug diosgenin (DG) and the natural polysaccharide lentinan (LNT) via the depletion of a high level of reduced glutathione (GSH) in tumor cells, resulting in a synergistic therapeutic effect of chemotherapy and immunotherapy. In vivo antitumor experiments showed that LDD NGs could inhibit the proliferation and metastasis of the A549 lung cancer cells. Further studies indicated that LDD NGs could increase the production of ROS and induce apoptosis of A549 cells. In addition, LNT released from LDD NGs could promote the proliferation of dendritic cells, increase the production of NO, and upregulate the expressions of the costimulatory molecules CD40, CD80, CD86, and MHC-II. The construction of LDD NGs was a novel drug synthesis approach that could provide fresh ideas for the development of polysaccharide-based redox-responsive drug delivery systems.
Collapse
Affiliation(s)
- Sibei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
3
|
Lin Z, Nie F, Cao R, He W, Xu J, Guo Y. Lentinan-based pH-responsive nanoparticles achieve the combination therapy of tumors. Int J Biol Macromol 2024; 279:135300. [PMID: 39236942 DOI: 10.1016/j.ijbiomac.2024.135300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Cancer poses a significant threat to human health, and there is an urgent need for more effective treatments. Combining chemotherapy and immunotherapy is an effective strategy to enhance curative outcomes and holds great potential for widespread application. The natural phytochemical genistein (GEN) exhibits cytotoxicity against tumors and is a potential chemotherapeutic agent. Lentinan (LTN) is a natural polysaccharide with immune-enhancing properties that has been utilized in tumor treatment. This study constructed a pH-responsive nanoparticle GEN@LTN-BDBA with chemotherapy and immunotherapy functions using GEN and LTN. After characterizing the nanoparticles, the molecular mechanism of GEN@LTN-BDBA formation was explored using in silico simulation. GEN@LTN-BDBA can significantly inhibit the proliferation of A549 and HepG2 cells in vitro. The in vivo experiment results demonstrated that treatment with GEN@LTN-BDBA can significantly reduce tumor cell mass and prevent metastasis. In this nanoparticle, GEN induced oxidative stress and apoptosis of tumor cells. Meanwhile, the released LTN initiated an anti-tumor immune response by promoting dendritic cell (DC) maturation and upregulating the expression of costimulatory molecules and major histocompatibility complex. The construction method of GEN@LTN-BDBA can be extended to the preparation of other polysaccharides and hydrophobic chemotherapy molecules, offering a novel strategy to enhance the efficacy of monotherapy.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenrui He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
4
|
Hooshyar MR, Raygan S, Mehdinavaz Aghdam R. Investigating layer-by-layer chitosan-dextran sulfate-coated mesoporous silica as a pH-sensitive drug delivery system. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:29. [PMID: 38884680 PMCID: PMC11182833 DOI: 10.1007/s10856-024-06797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/03/2024] [Indexed: 06/18/2024]
Abstract
Mesoporous silica nanoparticles (MSNPs) coated by chitosan (CS) were shown to be a proper candidate as a carrier for drug delivery purposes. However, choosing the suitable drug-containing complexes to be applied on MSNPs-CS is of much greater importance to evaluate the possible candidate for an efficient combination of cell viability, drug release kinetics, and atherosclerosis prevention. In this regard, this study concentrates on the synthesis and assessment of coated MSNPs-CS designed for drug delivery purposes. The MSNPs are coated with polyelectrolyte complexes (PEC) composed of CS and dextran sulfate (MSNPs-CS-DX), serving as a versatile drug carrier with favorable biological characteristics. CS-DX is applied to MSNPs without requiring complex or multi-step synthesis procedures. Rosuvastatin, a cholesterol-lowering medication, is chosen for its therapeutic relevance. Additionally, CS-DX is found to relatively impede the uptake of low-density lipoproteins (LDLs) by macrophages, enhancing their potential therapeutic utility. FTIR pattern, FESEM, and TEM images prove MSNPs-CS-DX formation. DLS measurement demonstrates the average particle size of 110 nm for MSNPs, with the combined thickness of CS and DX layers ranging from 10 to 15 nm. BET test is carried out to evaluate the pore size and porosity of structure, showing outstanding results that cause an entrapment efficiency of 57% for MSNPs-CS-DX. Furthermore, the findings demonstrate the pH sensitivity of MSNPs-CS-DX on drug release kinetics. Notably, the CS-DX layer exhibits a significant enhancement in cell viability of human umbilical vein endothelial cells (HUVEC) by approximately 24% within a 24 h timeframe compared to MSNPs lacking CS-DX.
Collapse
Affiliation(s)
- Mohammad Reza Hooshyar
- Synthesis and Extraction of Materials Lab., School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
| | - Shahram Raygan
- Synthesis and Extraction of Materials Lab., School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
| | - Rouhollah Mehdinavaz Aghdam
- Biomaterials Lab., School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| |
Collapse
|
5
|
Wang J, Wu X, Chen J, Gao T, Zhang Y, Yu N. Traditional Chinese medicine polysaccharide in nano-drug delivery systems: Current progress and future perspectives. Biomed Pharmacother 2024; 173:116330. [PMID: 38422656 DOI: 10.1016/j.biopha.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Traditional Chinese medicine polysaccharides (TCMPs) have gained increasing attention in the field of nanomedicine due to their diverse biological activities and favorable characteristics as drug carriers, including biocompatibility, biodegradability, safety, and ease of modification. TCMPs-based nano-drug delivery systems (NDDSs) offer several advantages, such as evasion of reticuloendothelial system (RES) phagocytosis, protection against biomolecule degradation, enhanced drug bioavailability, and potent therapeutic effects. Therefore, a comprehensive review of the latest developments in TCMPs-based NDDSs and their applications in disease therapy is of great significance. This review provides an overview of the structural characteristics and biological activities of TCMPs relevant to carrier design, the strategies employed for constructing TCMPs-based NDDSs, and the versatile role of TCMPs in these systems. Additionally, current challenges and future prospects of TCMPs in NDDSs are discussed, aiming to provide valuable insights for future research and clinical translation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Wu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jing Chen
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yumei Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China; Department of Chemistry, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Department of Clinical Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Ju J, Xu D, Mo X, Miao J, Xu L, Ge G, Zhu X, Deng H. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr Polym 2023; 317:121048. [PMID: 37364948 DOI: 10.1016/j.carbpol.2023.121048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.
Collapse
Affiliation(s)
- Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Yang Y, Wang P, Ji Z, Xu X, Zhang H, Wang Y. Polysaccharide‑platinum complexes for cancer theranostics. Carbohydr Polym 2023; 315:120997. [PMID: 37230639 DOI: 10.1016/j.carbpol.2023.120997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Platinum anticancer drugs have been explored and developed in recent years to reduce systematic toxicities and resist drug resistance. Polysaccharides derived from nature have abundant structures as well as pharmacological activities. The review provides insights on the design, synthesis, characterization and associating therapeutic application of platinum complexes with polysaccharides that are classified by electronic charge. The complexes give birth to multifunctional properties with enhanced drug accumulation, improved tumor selectivity and achieved synergistic antitumor effect in cancer therapy. Several techniques developing polysaccharides-based carriers newly are also discussed. Moreover, the lasted immunoregulatory activities of innate immune reactions triggered by polysaccharides are summarized. Finally, we discuss the current shortcomings and outline potential strategies for improving platinum-based personalized cancer treatment. Using platinum-polysaccharides complexes for improving the immunotherapy efficiency represents a promising framework in future.
Collapse
Affiliation(s)
- Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng 224007, China.
| | - Pengge Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Zengrui Ji
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
8
|
Feng M, Dai X, Yang C, Zhang Y, Tian Y, Qu Q, Sheng M, Li Z, Peng X, Cen S, Shi X. Unification of medicines and excipients: The roles of natural excipients for promoting drug delivery. Expert Opin Drug Deliv 2023; 20:597-620. [PMID: 37150753 DOI: 10.1080/17425247.2023.2210835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Drug delivery systems (DDSs) formed by natural active compounds be instrumental in developing new green excipients and novel DDS from natural active compounds (NACs). 'Unification of medicines and excipients'(UME), the special inherent nature of the natural active compounds, provides the inspiration and conduction to achieve this goal. AREAS COVERED This review summarizes the typical types of NACs from herbal medicine, such as saponins, flavonoids, polysaccharides, etc. that act as excipients and their main application in DDS. The comparison of the drug delivery systems formed by NACs and common materials and the primary formation mechanisms of these NACs are also introduced to provide a deepened understanding of their performance in DDS. EXPERT OPINION Many natural bioactive compounds, such as saponins, polysaccharides, etc. have been used in DDS. Diversity of structure and pharmacological effects of NACs turn out the unique advantages in improving the performance of DDSs like targeting ability, adhesion, encapsulation efficiency(EE), etc. and enhancing the bioavailability of loaded drugs.
Collapse
Affiliation(s)
- Minfang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingxing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| | - Cuiting Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| |
Collapse
|
9
|
Yang F, Cheung PCK. Fungal β-Glucan-Based Nanotherapeutics: From Fabrication to Application. J Fungi (Basel) 2023; 9:jof9040475. [PMID: 37108930 PMCID: PMC10143420 DOI: 10.3390/jof9040475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal β-glucans are naturally occurring active macromolecules used in food and medicine due to their wide range of biological activities and positive health benefits. Significant research efforts have been devoted over the past decade to producing fungal β-glucan-based nanomaterials and promoting their uses in numerous fields, including biomedicine. Herein, this review offers an up-to-date report on the synthetic strategies of common fungal β-glucan-based nanomaterials and preparation methods such as nanoprecipitation and emulsification. In addition, we highlight current examples of fungal β-glucan-based theranostic nanosystems and their prospective use for drug delivery and treatment in anti-cancer, vaccination, as well as anti-inflammatory treatments. It is anticipated that future advances in polysaccharide chemistry and nanotechnology will aid in the clinical translation of fungal β-glucan-based nanomaterials for the delivery of drugs and the treatment of illnesses.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
10
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Xu PY, Kumar Kankala R, Wang SB, Chen AZ. Development of highly stable ICG-polymeric nanoparticles with ultra-high entrapment efficiency using supercritical antisolvent (SAS)-combined solution casting process. Int J Pharm 2022; 629:122348. [DOI: 10.1016/j.ijpharm.2022.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
12
|
5-aminosalicylic acid pH sensitive core-shell nanoparticles targeting ulcerative colitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081579. [PMID: 36015204 PMCID: PMC9415106 DOI: 10.3390/pharmaceutics14081579] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review focuses on the biomedical application of mesoporous silica nanoparticles (MSNs), mainly focusing on the therapeutic application of MSNs for cancer treatment and specifically on overcoming the challenges of currently available anthelmintics (e.g., low water solubility) as repurposed drugs for cancer treatment. MSNs, due to their promising features, such as tunable pore size and volume, ability to control the drug release, and ability to convert the crystalline state of drugs to an amorphous state, are appropriate carriers for drug delivery with the improved solubility of hydrophobic drugs. The biomedical applications of MSNs can be further improved by the development of MSN-based multimodal anticancer therapeutics (e.g., photosensitizer-, photothermal-, and chemotherapeutics-modified MSNs) and chemical modifications, such as poly ethyleneglycol (PEG)ylation. In this review, various applications of MSNs (photodynamic and sonodynamic therapies, chemotherapy, radiation therapy, gene therapy, immunotherapy) and, in particular, as the carrier of anthelmintics for cancer therapy have been discussed. Additionally, the issues related to the safety of these nanoparticles have been deeply discussed. According to the findings of this literature review, the applications of MSN nanosystems for cancer therapy are a promising approach to improving the efficacy of the diagnostic and chemotherapeutic agents. Moreover, the MSN systems seem to be an efficient strategy to further help to decrease treatment costs by reducing the drug dose.
Collapse
Affiliation(s)
- Maedeh Koohi Moftakhari Esfahani
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|
14
|
Ding Q, Zhuang T, Fu P, Zhou Q, Luo L, Dong Z, Li H, Tang S. Alpha-terpineol grafted acetylated lentinan as an anti-bacterial adhesion agent. Carbohydr Polym 2022; 277:118825. [PMID: 34893242 DOI: 10.1016/j.carbpol.2021.118825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
Biomedical implants-associated bacterial infections have become a major threat to human health. Therefore, it is meaningful to develop new antibacterial strategies to solve this problem. In this study, we conjugated acetylated lentinan (AceLNT) with α-terpineol (AceLNT-g-α-ter), a highly effective natural antibacterial compound, to constitute a novel AceLNT-g-α-ter membrane (AceLNT-g-α-terM). Compared with AceLNT membrane (AceLNTM), the adhesion amount of E. coli and P. aeruginosa in AceLNT-g-α-terM decreased by 80% and 85% after 7 d incubation in fluid bacterial medium. Moreover, the number of E. coli and P. aeruginosa biofilm on AceLNT-g-α-terM surface decreased by 70% and 71%. At the meanwhile, α-terpineol grafting modification of AceLNT had limited effect on its stimulating activity on macrophages and had no more cytotoxicity. In summary, our study firstly confirmed that AceLNT-g-α-terM could effectively inhibit gram-negative bacteria adhesion and biofilm formation, and provided a novel strategy for preventing infection of biomedical implants.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tingting Zhuang
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengcheng Fu
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing Zhou
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Luo
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zixuan Dong
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hang Li
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shunqing Tang
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
15
|
Extraction, purification, bioactivities and prospect of lentinan: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|