1
|
Liu X, Yao T. Types, synthesis pathways, purification, characterization, and agroecological physiological functions of microbial exopolysaccharides: A review. Int J Biol Macromol 2024; 281:136317. [PMID: 39378926 DOI: 10.1016/j.ijbiomac.2024.136317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Exopolysaccharides (EPS), originating from various microbes, are essential bioproducts with widespread applications including packaging, biomedicine, wastewater treatment, cosmetics, agriculture, and food industries. Particularly, in the field of sustainable agriculture, microbial EPS have positive effects on plant growth and have gained considerable interest among agriculturists. However, few studies have elucidated the mechanisms of action of EPS in soil-microbe-plant interactions in agroecosystems. This review focuses on the sources and types of EPS, biosynthetic processes, factors affecting EPS yield, extraction and purification methods employed to produce microbial EPS, and structural characterization methods for EPS. Moreover, the agroecological physiological functions of microbial EPS with respect to promoting soil health (e.g., improving soil structure and fertility and repairing contaminated soil) and plant growth (e.g., plant growth and physiological metabolism under normal and stress conditions, such as salt, drought, heavy metals, and extreme temperatures) are critically highlighted. Furthermore, existing challenges and prospects for agricultural applications are discussed. This review demonstrates that the application of microbial EPS in agriculture provides a new type of green material for agricultural producers to improve soil quality, increase agricultural productivity, and provide new ideas for sustainable agricultural development.
Collapse
Affiliation(s)
- Xiaoting Liu
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
He K, Shi X, Tao Z, Hu X, Sun L, Wang R, Gu Y, Xu H, Qiu Y, Lei P. Genomic and Transcriptomic Analyses Identify Two Key Glycosyltransferase Genes alhH and alhK of Exopolysaccharide Biosynthesis in Pantoea alhagi NX-11. Microorganisms 2024; 12:2016. [PMID: 39458325 PMCID: PMC11509785 DOI: 10.3390/microorganisms12102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The exopolysaccharide (EPS) produced by Pantoea alhagi NX-11, referred to as alhagan, enhances plant stress resistance, improves soil properties, and exhibits notable rheological properties. Despite these benefits, the exact bio-synthetic process of alhagan by P. alhagi NX-11 remains unclear. This study focused on sequencing the complete genome of P. alhagi NX-11 and identifying an alhagan synthesis gene cluster (LQ939_RS12550 to LQ939_RS12700). Gene annotation revealed that alhagan biosynthesis in P. alhagi NX-11 follows the Wzx/Wzy-dependent pathway. Furthermore, transcriptome analysis of P. alhagi NX-11 highlighted significant upregulation of four glycosyltransferase genes (alhH, wcaJ, alhK, and alhM) within the alhagan synthesis gene cluster. These glycosyltransferases are crucial for alhagan synthesis. To delve deeper into this process, two upregulated and uncharacterized glycosyltransferase genes, alhH and alhK, were knocked out. The resulting mutants, ΔalhH and ΔalhK, showed a notable decrease in EPS yield, reduced molecular weight, and altered monosaccharide compositions. These findings contribute to a better understanding of the alhagan biosynthesis mechanism in P. alhagi NX-11.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (K.H.); (X.S.); (Z.T.); (X.H.); (L.S.); (R.W.); (Y.G.); (H.X.); (Y.Q.)
| |
Collapse
|
3
|
Akhtar N, Wani AK, Sharma NR, Sanami S, Kaleem S, Machfud M, Purbiati T, Sugiono S, Djumali D, Retnaning Prahardini PE, Purwati RD, Supriadi K, Rahayu F. Microbial exopolysaccharides: Unveiling the pharmacological aspects for therapeutic advancements. Carbohydr Res 2024; 539:109118. [PMID: 38643705 DOI: 10.1016/j.carres.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Samira Sanami
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Kaleem
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Moch Machfud
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Titiek Purbiati
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Sugiono Sugiono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Djumali Djumali
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | | | - Rully Dyah Purwati
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Khojin Supriadi
- Research Center for Food Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, (16911), Indonesia
| |
Collapse
|
4
|
Comunian TA, Gómez-Mascaraque LG, Maudhuit A, Roelens G, Poncelet D, Drusch S, Brodkorb A. Electrostatic spray drying: A new alternative for drying of complex coacervates. Food Res Int 2024; 183:114189. [PMID: 38760128 DOI: 10.1016/j.foodres.2024.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 05/19/2024]
Abstract
Complex coacervation can be used for controlled delivery of bioactive compounds (i.e., flaxseed oil and quercetin). This study investigated the co-encapsulation of flaxseed oil and quercetin by complex coacervation using soluble pea protein (SPP) and gum arabic (GA) as shell materials, followed by innovative electrostatic spray drying (ES). The dried system was analyzed through encapsulation efficiency (EE) and yield (EY), morphological and physicochemical properties, and stability for 60 days. Small droplet size emulsions were produced by GA (in the first step of complex coacervation) due to its greater emulsifying activity than SPP. Oil EY and EE, moisture, and water activity in dried compositions ranged from 75.7 to 75.6, 76.0-73.4 %, 3.4-4.1 %, and 0.1-0.2, respectively. Spherical microcapsules were created with small and aggregated particle size but stable for 60 days. An amount of 8 % of quercetin remained in the dried coacervates after 60 days, with low hydroperoxide production. In summary, when GA is used as the emulsifier and SPP as the second biopolymer in the coacervation process, suitable coacervates for food applications are obtained, with ES being a novel alternative to obtain coacervates in powder, with improved stability for encapsulated compounds. As a result, this study helps provide a new delivery system option and sheds light on how the characteristics of biopolymers and the drying process affect coacervate formation.
Collapse
Affiliation(s)
- Talita A Comunian
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P25YN63, Ireland
| | | | - Audrey Maudhuit
- Fluid Air Europe, Division of Spraying Systems Co., Treillieres, France
| | | | | | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Königin-Luise-Straße 22, 14195 Berlin, Germany
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P25YN63, Ireland.
| |
Collapse
|
5
|
Fan X, Xiao X, Yu W, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Yan H, Wang J, Wu A, Wang Q, Wang H, Mao X. Yucca schidigera purpurea-sourced arabinogalactan polysaccharides augments antioxidant capacity facilitating intestinal antioxidant functions. Carbohydr Polym 2024; 326:121613. [PMID: 38142074 DOI: 10.1016/j.carbpol.2023.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
This study isolated and purified a novel homogeneous arabinogalactan polysaccharide from Yucca schidigera extract (YSE), unveiled its unique structure and explored its antioxidant function. Firstly, the antioxidant potential of YSE was demonstrated in piglet trials. A homogeneous polysaccharide with a molecular weight of 24.2 kDa, designated as Yucca schidigera polysaccharide B (YPB), was isolated and purified from YSE. The monosaccharide composition of YPB was Rha, Araf, Galp, and Glcp, whose molar percentages were 2.8 %, 11.6 %, 45.5 %, and 40.0 %, respectively. Methylation analysis combined with 1D and 2D nuclear magnetic resonance showed that YPB was a complex polysaccharide with a main glycosidic linkage pattern of →2)-α-ʟ-Rha-(1 → 3)-β-ᴅ-Galp-(1→3)-β-ᴅ-Galp-(1 → 3)-β-ᴅ-Galp-(1 → 3)-β-ᴅ-Glcp-(1→, and branched Araf and Galp fragments were connected with the main chain through →3,6)-β-ᴅ-Galp-(1→, →3,4)-β-ᴅ-Glcp-(1→, and →2,4)-α-ʟ-Rha-(1→ linkages. Following the in vitro biochemical assays of bioactive components, YPB should be the contributor to the antioxidant activity in YSE. Based on the establishment of oxidative stress model, YPB exhibited strong antioxidant capacity and activated NRF2 pathway, and then provided protection against the damage induced oxidative stress in IPEC-J2 cells and rats. Further analysis with inhibitors found that this antioxidant effect was attributed to its interaction with epidermal growth factor receptor and mannose receptor, and stimulating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangjun Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Wei Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jiangping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
6
|
Kavitake D, Tiwari S, Devi PB, Shah IA, Reddy GB, Shetty PH. Production, purification, and functional characterization of glucan exopolysaccharide produced by Enterococcus hirae strain OL616073 of fermented food origin. Int J Biol Macromol 2024; 259:129105. [PMID: 38176508 DOI: 10.1016/j.ijbiomac.2023.129105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Microbial exopolysaccharides (EPS) are high molecular weight polymeric substances with great diversity and variety of applications in the food and pharma industry. In this study, we report the extraction of an EPS from Enterococcus hirae OL616073 strain originally isolated from Indian fermented food and its purification by ion exchange and size exclusion chromatography for physical-functional analyses. The EPS showed two prominent fractions (EPS F1 and EPS F2) with molecular mass 7.7 × 104 and 6.5 × 104 Da respectively by gel permeation chromatography. These fractions were further characterized by FTIR, HPTLC, GC-MS, and NMR as a homopolysaccharide of glucose linked with α-(1 → 6) and α-(1 → 3) glycosidic linkages. The porous, spongy, granular morphology of EPS was observed under scanning electron microscopy. EPS has revealed strong physico-functional properties like water solubility index (76.75 %), water contact angle (65.74°), water activity (0.35), hygroscopicity (3.05 %), water holding capacity (296.19 %), oil holding capacity (379.91 %), foaming capacity (19.58 %), and emulsifying activity (EA1-72.22 %). Rheological analysis showed that aqueous solution of EPS exhibited a non-Newtonian fluid behavior and shear-thinning characteristics. Overall, EPS exhibits techno functional properties with potential applications as a functional biopolymer in food and pharma industry.
Collapse
Affiliation(s)
- Digambar Kavitake
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana 500007, India
| | - Swati Tiwari
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | - Irshad Ahmad Shah
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | - G Bhanuprakash Reddy
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana 500007, India
| | | |
Collapse
|
7
|
Xue D, Pei F, Liu H, Liu Z, Liu Y, Qin L, Xie Y, Wang C. Evaluation of antioxidation, regulation of glycolipid metabolism and potential as food additives of exopolysaccharide from Sporidiobolus pararoseus PFY-Z1. Prep Biochem Biotechnol 2023; 53:1176-1186. [PMID: 36803064 DOI: 10.1080/10826068.2023.2177868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
At present, there are relatively few studies on the production of exopolysaccharide (EPS) by yeasts. Therefore, exploring the properties of EPS produced by yeast can not only enrich the source of EPS, but also play an important role in its future application in the food field. The aim of this study was to explore the biological activities of EPS (named SPZ) from Sporidiobolus pararoseus PFY-Z1, as well as the dynamic changes in physical and chemical properties that occur during simulated gastrointestinal digestion, and the effects of SPZ on microbial metabolites during fecal fermentation in vitro. The results revealed that SPZ had good water solubility index, water-holding capacity, emulsifying ability, coagulated skim milk, antioxidant properties, hypoglycemic activities, and bile acid-binding abilities. Furthermore, the content of reducing sugars increased from 1.20 ± 0.03 to 3.34 ± 0.11 mg/mL after gastrointestinal digestion, and had little effect on antioxidant activities. Moreover, SPZ could promote the production of short-chain fatty acids during fermentation for 48 h, in particular, propionic acid and n-butyric acid increased to 1.89 ± 0.08 and 0.82 ± 0.04 mmol/L, respectively. Besides this, SPZ could inhibit LPS production. In general, this study can help us to better understand the potential bioactivities, and the changes in bio-activities of compounds after digestion of SPZ.
Collapse
Affiliation(s)
- Di Xue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Fangyi Pei
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Henan Liu
- Metrology Institute, Qiqihar Inspection and Testing Center, Qiqihar, China
| | - Zhenyan Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Yuchao Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Lei Qin
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Yinzhuo Xie
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Changli Wang
- School of Basic Medical Sciences, Youjiang Medical University For Nationalities, Baise Guangxi, China
| |
Collapse
|
8
|
Concepción A, Ricardo A, Enrique SL. Biodegradation of Choline NTF 2 by Pantoea agglomerans in Different Osmolarity. Characterization and Environmental Implications of the Produced Exopolysaccharide. Polymers (Basel) 2023; 15:3974. [PMID: 37836024 PMCID: PMC10575057 DOI: 10.3390/polym15193974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
A specific microorganism, Pantoea agglomerans uam8, was isolated from the ionic liquid (IL) Choline NTF2 and identified by molecular biology. A biodegradation study was performed at osmolarity conditions (0.2, 0.6, 1.0 M). These had an important influence on the growth of the strain, exopolysaccharide (EPS) production, and biodegradation (1303 mg/L max production and 80% biodegradation at 0.6 M). These conditions also had an important influence on the morphology of the strain and its EPSs, but not in the chemical composition. The EPS (glucose, mannose and galactose (6:0.5:2)) produced at 0.6 M was further characterized using different techniques. The obtained EPSs presented important differences in the behavior of the emulsifying activity for vegetable oils (olive (86%), sunflower (56%) and coconut (90%)) and hydrocarbons (diesel (62%), hexane (60%)), and were compared with commercial emulsifiers. The EPS produced at 0.6 M had the highest emulsifying activity overall. This EPS did not show cytotoxicity against the tested cell line (<20%) and presented great advantages as an antioxidant (1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) (85%), hydroxyl radical (OH) (99%), superoxide anion (O2-) (94%), chelator (54%), and antimicrobial product (15 mm). The osmolarity conditions directly affected the capacity of the strain to biodegrade IL and the subsequently produced EPS. Furthermore, the EPS produced at 0.6 M has potential for environmental applications, such as the removal of hazardous materials by emulsification, whilst resulting in positive health effects such as antioxidant activity and non-toxicity.
Collapse
Affiliation(s)
- Abrusci Concepción
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain (S.-L.E.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Amils Ricardo
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain (S.-L.E.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Sánchez-León Enrique
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain (S.-L.E.)
| |
Collapse
|
9
|
Xie Y, Ye Z, Wan X, Deng H, Sun W, He X, Chen K. Screening of exopolysaccharide-producing Enterobacter aerogenes NJ1023 and its cadaverine biosynthesis promotion. Front Microbiol 2023; 14:1200123. [PMID: 37577413 PMCID: PMC10414541 DOI: 10.3389/fmicb.2023.1200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Enterobacter aerogenes, the gram-negative bacteria belonging to the family Enterobacteriaceae, lacks the ability to synthesize chemicals. However, in this study, a strain of Enterobacter aerogenes NJ1023 screened from the soil containing petrochemicals was found to be capable of producing extracellular polysaccharides (EPSs). After purification of the polysaccharide, the chemical composition and physicochemical properties of the polysaccharide were analyzed by UV-Vis spectra, FTIR spectroscopy and GC-MS, etc. The results showed that: The molecular weight of the polysaccharide produced by this strain was only 2.7×103 Da, which was lower than that reported in other polysaccharides from the same genus. The polysaccharide produced by E. aerogenes NJ1023 mainly comprised xylose, glucose, galactose, and N-acetylglucosamine with a molar ratio of 0.27: 4.52: 1.74: 0.2, which differed from those reported from the same genus. The results demonstrated that lower incubation temperatures and shaking speeds were more favorable for EPSs synthesis, while higher incubation temperatures and shaking speeds favored cell growth. Additionally, the EPSs produced by E. aerogenes NJ1023 significantly protected the Escherichia coli cells against cadaverine stress. Overall, the discovery of EPSs produced by E. aerogenes increased the diversity of bacterial polysaccharides and broadened the potential applications of this species.
Collapse
Affiliation(s)
| | | | | | | | | | - Xun He
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical, Nanjing Tech University, Nanjing, China
| | | |
Collapse
|
10
|
Gou Z, Peng Z, Wang S, Chen L, Ma Z, Kang Y, Sun L, Wang R, Xu H, Gu Y, Sun D, Lei P. Efficient production and skincare activity evaluation of schizophyllan, a β-glucan derived from Schizophyllum commune NTU-1. Int J Biol Macromol 2023; 241:124504. [PMID: 37080406 DOI: 10.1016/j.ijbiomac.2023.124504] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
Schizophyllan (SPG), a β-glucan produced by the fungus Schizophyllum commune, possesses a β-(1 → 3)-linked backbone with single β-(1 → 6)-linked glucose side chains at approximately every third residue. In this study, we screened SPG-producing strains of S. commune from different provinces in China. A candidate strain (NTU-1) with a high SPG yield was chosen, and the fermentation conditions were optimized. The optimal carbon and nitrogen sources were sucrose (40 g/L) and yeast extract (20 g/L), respectively. The optimal conditions for pH and temperature were 5.0 and 28 °C, respectively. Inclusion of 0.2 mg/L of 2,4-Dichlorophenoxyacetic acid in the medium further increased the SPG concentration. In a 5-L bioreactor, the fermentation cycle was reduced from the initial seven days to five days, and the concentration of SPG obtained was 21.3 g/L, which is the highest reported to date. In addition, we evaluated the bioactivity of the SPG prepared using strain NTU-1. The results showed that SPG had certain characteristics of anti-oxidation, anti-photoaging, and inhibition of melanin production, making it a promising reagent for skin care.
Collapse
Affiliation(s)
- Zekai Gou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhibo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shiyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liuyang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhicong Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Kang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Dafeng Sun
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, Yunnan, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Guo R, Sun X, Kou Y, Song H, Li X, Song L, Zhao T, Zhang H, Li D, Liu Y, Song Z, Wu J, Wu Y. Hydrophobic aggregation via partial Gal removal affects solution characteristics and fine structure of tamarind kernel polysaccharides. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
12
|
Zhou R, Qian Y, Lei Z, Tang Y, Li Y. Production and characterization of exopolysaccharides from salinity-induced Auxenochlorella protothecoides and the analysis of anti-inflammatory activity. Int J Biol Macromol 2023; 240:124217. [PMID: 37001784 DOI: 10.1016/j.ijbiomac.2023.124217] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
The set scenario of this work was to investigate the production, physicochemical characteristics, and anti-inflammatory activities of exopolysaccharides from salinity-induced Auxenochlorella protothecoides. The results demonstrated that 10 ‰ salinity manipulation endowed preferable exopolysaccharide production by A. protothecoides. Under this salinity stress, ACPEPS1A and ACPEPS2A were purified from exopolysaccharide production by anion chromatography and molecular exclusion chromatography. ACPEPS1A exhibited a molecular weight (Mw) of 132 kDa and mainly consisted of galactose. ACPEPS2A was a heteropolysaccharide with an Mw of 170 kDa and the main monosaccharides of galactose and rhamnose with separate molar percents of 42.41 % and 35.29 %, respectively. FTIR, 1H and 13C NMR supported that monosaccharide components of ACPEPS1A and ACPEPS2A possessed both α- and β-configuration pyranose rings. Further evidence indicated that ACPEPS1A and ACPEPS2A could effectively inhibit the inflammatory response in lipopolysaccharide (LPS) induced RAW264.7 cells by quenching inflammatory factor levels such as ROS, iNOS, TNF-α, and IL-6. The potential anti-inflammatory possibilities were that the monosaccharides of ACPEPS1A and ACPEPS2A possessed higher affinity with receptors on the macrophage surface than LPS and hampered LPS-induced inflammation. The findings of this work would favor innovative applications of exopolysaccharides from microalgae in complementary medicines or functional foods.
Collapse
|
13
|
Sun L, Cheng L, Fu H, Wang R, Gu Y, Qiu Y, Sun K, Xu H, Lei P. A strategy for nitrogen conversion in aquaculture water based on poly-γ-glutamic acid synthesis. Int J Biol Macromol 2023; 229:1036-1043. [PMID: 36603727 DOI: 10.1016/j.ijbiomac.2022.12.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Ammonia and nitrite are nitrogenous pollutants in aquaculture effluents, which pose a major threat to the health of aquatic animals. In this study, we developed a nitrogen conversion strategy based on synthesis of poly-γ-glutamic acid (γ-PGA) by Bacillus subtilis NX-2. The nitrogen removal efficiency of NX-2 was closely related to synthesizing γ-PGA, and was positively correlated with the inoculum level. The degradation rates of ammonia nitrogen and nitrite at 104 CFU/mL were 84.42 % and 62.56 %, respectively. Through adaptive laboratory evolution (ALE) experiment, we obtained a strain named ALE 5 M with ammonia degradation rate of 98.03 % and nitrite of 93.62 % at the inoculum level of 104 CFU/mL. Transcriptome analysis showed that the strain was more likely to produce γ-PGA after ALE. By enzyme activity and qPCR analysis, we confirmed that ALE 5 M degraded ammonia nitrogen through γ-PGA synthesis, which provided a new way for nitrogen removal in aquaculture water.
Collapse
Affiliation(s)
- Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lifangyu Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Heng Fu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ke Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
14
|
Cao C, Bian Y, Cang W, Wu J, Wu R. Structural characterization and hepatoprotective activity of exopolysaccharide from Bacillus velezensis SN-1. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:738-749. [PMID: 36053948 DOI: 10.1002/jsfa.12185] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exopolysaccharide biopolymers produced by microorganisms are crucial to the environment. They contribute to areas such as the health and bionanotechnology sectors, food and cosmetic industries as gelling agents, and environmental sector as flocculants owing to their biodegradability and non-toxic nature. The current study aimed to isolate the fraction of released exopolysaccharide (rEPS) by Bacillus velezensis SN-1 from Chinese Da-Jiang. RESULTS The weighted average molecular weight of the major isolated component, rEPS-2, was 202 kDa, and its monosaccharide composition included mannose, glucose, and galactose at a molar ratio of 0.38:0.30:0.32. Further, the rEPS-2 was characterized using methylation analysis and one-dimensional/two-dimensional nuclear magnetic resonance (1D/2D NMR) spectroscopy. In vivo hepatoprotective effects indicated that rEPS-2 could alleviate carbon tetrachloride (CCl4 )-induced liver injury in mice by lowering the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and the malondialdehyde (MDA) levels. Furthermore, rEPS-2 can increase the expression of antioxidant genes HO-1, GCLC and NQO1 in the Nrf2/ARE signaling pathway, thereby increasing the activity of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and reduced catalase (CAT) in liver cells. Furthermore, the rEPS-2 can be used and modulate the gut microbiota of mice with liver injury caused by CCl4 . CONCLUSIONS These results suggest that rEPS-2 has promising potential to serve as hepatoprotective agents. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengxu Cao
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Centre of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P. R. China
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, P. R. China
| | - Yuanyuan Bian
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Centre of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P. R. China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Centre of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P. R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Centre of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P. R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Centre of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P. R. China
| |
Collapse
|
15
|
Li F, Hu X, Sun X, Li H, Lu J, Li Y, Bao M. Effect of fermentation pH on the structure, rheological properties, and antioxidant activities of exopolysaccharides produced by Alteromonas australica QD. Glycoconj J 2022; 39:773-787. [PMID: 36367683 DOI: 10.1007/s10719-022-10087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The pH value was essential for the growth and metabolism of microorganisms. Acidic pH exopolysaccharide (AC-EPS) and alkaline pH exopolysaccharide (AL-EPS) secreted by A. australica QD mediated by pH were studied in this paper. The total carbohydrate content and molecular weight of AC-EPS (79.59% ± 2.24% (w/w), 8.374 × 105 Da) and AL-EPS (82.48% ± 1.46% (w/w), 6.182 × 105 Da) were estimated and compared. In AC-EPS, mannose (3.78%) and galactose (3.24%) content was more, while the proportion of glucuronic acid was less in comparison to AL-EPS. The scanning electron microscopy revealed the structural differences among the AC-EPS and AL-EPS. Thermogravimetric analysis showed degradation temperatures of 272.8 °C and 244.9 °C for AC-EPS and AL-EPS, respectively. AC-EPS was found to exhibit better rheological properties and emulsifying capabilities, while AL-EPS had superior antioxidant activities. Overall, both AC-EPS and AL-EPS have the potential to be used as emulsifiers and biological antioxidants.
Collapse
Affiliation(s)
- Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China. .,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
16
|
Ma Y, Wang Z, Arifeen MZU, Xue Y, Yuan S, Liu C. Structure and bioactivity of polysaccharide from a subseafloor strain of Schizophyllum commune 20R-7-F01. Int J Biol Macromol 2022; 222:610-619. [PMID: 36167101 DOI: 10.1016/j.ijbiomac.2022.09.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
Fungal polysaccharide is a kind of biomacromolecule with multiple biological activities, which has a wide application prospect and may play an important role in organisms to cope with extreme environments. Herein, we reported an extracellular polysaccharide (EPS) produced by Schizophyllum commune 20R-7-F01 that was isolated from subseafloor sediments at ~2 km below the seafloor, obtained during expedition 337. The monosaccharide of EPS was glucose and its molecular weight was 608.8 kDa. Methylation and NMR analysis indicated that the backbone of the EPS was (1 → 3)-β-D-glucan with a side chain (1 → 6) β-D-glucan linking at every third residue. Bio-active assays revealed that the EPS had potent antioxidant activity and could promote RAW264.7 cells viability and phagocytosis. These results suggest that fungi derived from sediments below seafloor are important and new source of polysaccharides and may be involved in the adaptation of fungi to anoxic subseafloor extreme ecosystem.
Collapse
Affiliation(s)
- Yunan Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Muhammad Zain Ul Arifeen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Sheng Yuan
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
17
|
Zhao M, Hu Y, Yao H, Huang J, Li S, Xu H. Sustainable production and characterization of medium-molecular weight welan gum produced by a Sphingomonas sp. RW. Carbohydr Polym 2022; 289:119431. [DOI: 10.1016/j.carbpol.2022.119431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
|
18
|
Liang Z, Yin Z, Liu X, Ma C, Wang J, Zhang Y, Kang W. A glucomannogalactan from Pleurotus geesteranus: Structural characterization, chain conformation and immunological effect. Carbohydr Polym 2022; 287:119346. [DOI: 10.1016/j.carbpol.2022.119346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
|
19
|
Niknezhad SV, Kianpour S, Jafarzadeh S, Alishahi M, Najafpour Darzi G, Morowvat MH, Ghasemi Y, Shavandi A. Biosynthesis of exopolysaccharide from waste molasses using Pantoea sp. BCCS 001 GH: a kinetic and optimization study. Sci Rep 2022; 12:10128. [PMID: 35710936 PMCID: PMC9203581 DOI: 10.1038/s41598-022-14417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
The bacterium Pantoea sp. BCCS 001 GH produces an exopolysaccharide (EPS) named Pantoan through using sugar beet molasses (SBM) as an inexpensive and widely available carbon source. This study aims to investigate the kinetics and optimization of the Pantoan biosynthesis using Pantoea sp. BCCS 001 GH in submerged culture. During kinetics studies, the logistic model and Luedeking-Piret equation are precisely fit with the obtained experimental data. The response surface methodology (RSM)-central composite design (CCD) method is applied to evaluate the effects of four factors (SBM, peptone, Na2HPO4, and Triton X-100) on the concentration of Pantoan in batch culture of Pantoea sp. BCCS 001 GH. The experimental and predicted maximum Pantoan production yields are found 9.9 ± 0.5 and 10.30 g/L, respectively, and the best prediction factor concentrations are achieved at 31.5 g/L SBM, 2.73 g/L peptone, 3 g/L Na2HPO4, and 0.32 g/L Triton X-100 after 48 h of submerged culture fermentation, at 30 °C. The functional groups and major monosaccharides (glucose and galactose) of a purified Pantoan are described and confirmed by 1HNMR and FTIR. The produced Pantoan is also characterized by thermogravimetric analysis and the rheological properties of the biopolymer are investigated. The present work guides the design and optimization of the Pantoea sp. BCCS 001 GH culture media, to be fine-tuned and applied to invaluable EPS, which can be applicable in food and biotechnology applications.
Collapse
Affiliation(s)
- Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| | - Sedigheh Kianpour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs, Lyngby, Denmark
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| | - Ghasem Najafpour Darzi
- Department of Chemical Engineering, Faculty of Engineering, Noshirvani University of Technology, Babol, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F. D. Roosevelt, 50-CP 165/61, 1050, Brussels, Belgium
| |
Collapse
|
20
|
Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Tetragenococcus halophilus SNTH-8. Int J Biol Macromol 2022; 208:288-298. [PMID: 35248612 DOI: 10.1016/j.ijbiomac.2022.02.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/20/2022] [Accepted: 02/27/2022] [Indexed: 01/14/2023]
Abstract
Tetragenococcus halophilus exopolysaccharides (THPS) are metabolites released by T. halophilus SNTH-8 to resist a high-salt environment. Although many studies have investigated the mechanisms underlying salt tolerance shown by T. halophilus, structural characteristics as well as antioxidant and emulsifying capacities of THPS remain unclear. In this study, we isolated and purified two components, THPS-1 and THPS-2, from T. halophilus SNTH-8. Purified THPS-1 and THPS-2 were composed of arabinose, xylose, fucose, galactose, glucose, and glucuronic acid at a molar ratio of 1.66:38.95:2.11:26.12:29.73:1.43 and 0.46:40.3:0.54:30.8:1.36:25.54, respectively. The average molecular weights of THPS-1 and THPS-2 were 14.98 kDa and 21.03 kDa, respectively. Moreover, the structures of THPS-1 and THPS-2 were investigated via fourier-transform infrared spectroscopy(FT-IR), nuclear magnetic resonance spectroscopy(NMR), scanning electron microscopy(SEM), and methylation analysis. THPS-1 was a highly branched polysaccharide with a backbone of α-D-(1,4)-Xyl, α-D-(1,6)-Glc and α-D-Xyl as the terminal, while THPS-2 was a highly branched polysaccharide with a backbone of α-D-(1,4)-Xyl and β-D-GlcA as the terminal. The branches were identified as β-D-(1,4,6)-Gal and β-D-(1,6)-Gal. Both THPS-1 and THPS-2 exhibited high antioxidant and emulsifying capacities. Overall, our structural analysis of THPS may further enhance research on natural emulsifiers and antioxidants.
Collapse
|
21
|
Sun L, Cheng L, Ma Y, Lei P, Wang R, Gu Y, Li S, Zhang F, Xu H. Exopolysaccharides from Pantoea alhagi NX-11 specifically improve its root colonization and rice salt resistance. Int J Biol Macromol 2022; 209:396-404. [PMID: 35413311 DOI: 10.1016/j.ijbiomac.2022.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) and their extracellular polymers such as exopolysaccharides can enhance rice salt stress resistance, however, the relevant mechanism remains unclear. In this study, an exopolysaccharides-deficient strain, named ΔpspD, was obtained from Pantoea alhagi NX-11 by chromosomal pspD deletion. The yield and characteristics of ΔpspD exopolysaccharides was obviously different from P. alhagi NX-11 exopolysaccharides (PAPS). Subsequently, hydroponic experiments showed that NX-11 or PAPS could enhance rice salt tolerance, but ΔpspD could not. Furthermore, it was found that PAPS promoted P. alhagi rhizosphere colonization through a direct effect on biofilm formation, as well as through an indirect impact of enhancing the abilities of biofilm formation and chemotaxis by altering rice root exudates. Importantly, the effect of PAPS in promoting the root colonization of NX-11 was specific. Through transcriptome and RT-qPCR analysis, we revealed that this specificity correlated with PAPS-induced lectin overexpression. The specificity between exopolysaccharides and the host microorganism ensures the colonization of the latter, and prevents other microorganisms from hitchhiking to the rice roots.
Collapse
Affiliation(s)
- Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lifangyu Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yuhang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fuhai Zhang
- Agricultural and Rural Bureau of Yantai, Yantai 264000, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
22
|
Separation, Purification, Structural Characterization, and Anticancer Activity of a Novel Exopolysaccharide from Mucor sp. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072071. [PMID: 35408470 PMCID: PMC9000282 DOI: 10.3390/molecules27072071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Mucor sp. has a wide range of applications in the food fermentation industry. In this study, a novel exopolysaccharide, labeled MSEPS, was separated from Mucor sp. fermentation broth through ethanol precipitation and was purified by ion-exchange chromatography, as well as gel filtration column chromatography. MSEPS was composed mostly of mannose, galactose, fucose, arabinose, and glucose with a molar ratio of 0.466:0.169:0.139:0.126:0.015 and had a molecular weight of 7.78 × 104 Da. The analysis of methylation and nuclear magnetic resonance results indicated that MSEPS mainly consisted of a backbone of →3,6)-α-d-Manp-(1→3,6)-β-d-Galp-(1→, with substitution at O-3 of →6)-α-d-Manp-(1→ and →6)-β-d-Galp-(1→ by terminal α-l-Araf residues. MTT assays showed that MSEPS was nontoxic in normal cells (HK-2 cells) and inhibited the proliferation of carcinoma cells (SGC-7901 cells). Additionally, morphological analysis and flow cytometry experiments indicated that MSEPS promoted SGC-7901 cell death via apoptosis. Therefore, MSEPS from Mucor sp. can be developed as a potential antitumor agent.
Collapse
|