1
|
Zeng X, Dong H, Zheng X, Zhang J. Enhanced efficacy of Magnolia denudata essential oil in fish anesthesia using nanoemulsions and self-microemulsifying drug delivery systems. Front Vet Sci 2024; 11:1440275. [PMID: 39664906 PMCID: PMC11631892 DOI: 10.3389/fvets.2024.1440275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction The use of plant essential oils as anesthetics for fish has gained increasing attention, but ethanol, often used as a co-solvent, presents certain limitations. Recently, Magnolia denudata essential oil (MDO) has emerged as a promising alternative for fish anesthesia and sedation. Methods and results To further improve MDO anesthesia efficacy, this study developed nanoemulsion (NE) and self-microemulsifying drug delivery system (SMEDDS) formulations of MDO. Transmission electron microscopy and stability tests confirmed that both NE and SMEDDS possess smaller particle sizes and are stable under various temperature conditions. Anesthetic trials on fish demonstrated that these formulations reduced the time needed to induce anesthesia compared with the non-formulations. Additionally, physiological assessments of the fish gills showed that neither NE nor SMEDDS caused irreversible damage to respiratory function. Discussion Overall, NE and SMEDDS present a safe and effective delivery system for MDO, enhancing its anesthetic properties while minimizing potential harm to aquatic organisms compared to traditional methods.
Collapse
Affiliation(s)
- Xiangbing Zeng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya, China
| | - Xiaoting Zheng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya, China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya, China
| |
Collapse
|
2
|
Ding ZG, Shen Y, Hu F, Zhang XX, Thakur K, Khan MR, Wei ZJ. Preparation and Characterization of Eugenol Incorporated Pullulan-Gelatin Based Edible Film of Pickering Emulsion and Its Application in Chilled Beef Preservation. Molecules 2023; 28:6833. [PMID: 37836676 PMCID: PMC10574067 DOI: 10.3390/molecules28196833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The purpose of this study was to develop a composite film composed of eugenol Pickering emulsion and pullulan-gelatin, and to evaluate its preservation effect on chilled beef. The prepared composite film was comprehensively evaluated in terms of the stability of emulsion, the physical properties of the film, and an analysis of freshness preservation for chilled beef. The emulsion size (296.0 ± 10.2 nm), polydispersity index (0.457 ± 0.039), and potential (20.1 ± 0.9 mV) proved the success of emulsion. At the same time, the films displayed good mechanical and barrier properties. The index of beef preservation also indicated that eugenol was a better active ingredient than clove essence oil, which led to the rise of potential of hydrogen, chroma and water content, and effectively inhibited microbial propagation, protein degradation and lipid oxidation. These results suggest that the prepared composites can be used as promising materials for chilled beef preservation.
Collapse
Affiliation(s)
- Zhi-Gang Ding
- School of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Shen
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fei Hu
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiu-Xiu Zhang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kiran Thakur
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
3
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Chitosan-based Pickering emulsion: A comprehensive review on their stabilizers, bioavailability, applications and regulations. Carbohydr Polym 2023; 304:120491. [PMID: 36641178 DOI: 10.1016/j.carbpol.2022.120491] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chitosan-based particles are one of the most promising Pickering emulsions stabilizers due to its cationic properties, cost-effective, biocompatibility, biodegradability. However, there are currently no comprehensive reviews analyzing the role of chitosan to develop Pickering emulsions, and the bioavailability and multiple uses of these emulsions. SCOPE AND APPROACH This review firstly summarizes the types, preparation and functional properties of chitosan-based Pickering emulsion stabilizers, followed by in vivo and in vitro bioavailability, main regulations, and future application and trends. KEY FINDINGS AND CONCLUSIONS Stabilizers used in chitosan-based Pickering emulsions include 6 categories: chitosan self-aggregating particles and 5 types of composites (chitosan-protein, chitosan-polysaccharide, chitosan-fatty acid, chitosan-polyphenol, and chitosan-inorganic). Chitosan-based Pickering emulsions improved the bioavailability of different compounds compared to traditional emulsions. Current applications include hydrogels, microcapsules, food ingredients, bio-based films, cosmeceuticals, porous scaffolds, environmental protection agents, and interfacial catalysis systems. However, due to current limitations, more research and development are needed to be extensively explored to meet consumer demand, industrial manufacturing, and regulatory requirements. Thus, optimization of stabilizers, bioavailability studies, 3D4D printing, fat substitutes, and double emulsions are the main potential development trends or research gaps in the field which would contribute to increase adoption of these promising emulsions at industrial level.
Collapse
Affiliation(s)
- Weihao Meng
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Effects of environmental stimuli on the physicochemical and rheological properties of chitosan-macroalgal polyphenol stabilized Pickering emulsion. Int J Biol Macromol 2023; 227:1245-1257. [PMID: 36473531 DOI: 10.1016/j.ijbiomac.2022.11.314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In this study, Pickering emulsions stabilized by chitosan (CS), chitosan-Laminaria japonica polyphenols (CP) and chitosan-Ascophyllum nodosum polyphenols (CB) were fabricated. This study also evaluated the stability of CS, CP, and CB under different environmental factors including pH (2-9), NaCl concentrations (0-500 mM), heat treatments (50-100 °C) and storage period (0-8 weeks). The characterization on interfacial layer of emulsion droplets demonstrated that macroalgal polyphenols could combined with the amorphous regions of chitosan particles through hydrogen bond and electrostatic interactions, providing stronger dual wettability with enhanced ability of interfacial layer in stabilizing Pickering emulsions. All three emulsions showed best droplet distribution, highest emulsion stability and specific surface area at pH 6 and 0 mM NaCl concentration as fresh emulsion. Moreover, CS, CP, and CB exhibited the rheological behaviour of pseudoplastic fluids at different pH and NaCl concentration. It should be noted that CP and CB exhibited higher emulsion stability than CS under a variety of environmental stresses. Overall, this research proved that chitosan-macroalgal polyphenol co-stabilized Pickering emulsion had enhanced stability against various environmental stimuli, which could be utilized as potential delivery and protection system for hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Weihao Meng
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Pickering emulsions with chitosan and macroalgal polyphenols stabilized by layer-by-layer electrostatic deposition. Carbohydr Polym 2023; 300:120256. [DOI: 10.1016/j.carbpol.2022.120256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
6
|
Yin Z, Wang M, Zeng M. Novel Pickering emulsion stabilized by natural fiber polysaccharide-protein extracted from Haematococcus pluvialis residues. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Tavassoli M, Khezerlou A, Bangar SP, Bakhshizadeh M, Haghi PB, Moghaddam TN, Ehsani A. Functionality developments of Pickering emulsion in food packaging: Principles, applications, and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Chen J, Gao Q, Zhou G, Xu X. Interactions between the protein-epigallocatechin gallate complex and nanocrystalline cellulose: A systematic study. Food Chem 2022; 387:132791. [DOI: 10.1016/j.foodchem.2022.132791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
|
9
|
Shah BR, Xu W, Mráz J. Fabrication, stability and rheological properties of zein/chitosan particles stabilized Pickering emulsions with antioxidant activities of the encapsulated vit-D 3. Int J Biol Macromol 2021; 191:803-810. [PMID: 34597693 DOI: 10.1016/j.ijbiomac.2021.09.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Pickering emulsions have been known to be promising candidates for encapsulating and delivering a wide range of bioactive compounds with antioxidant potentials. In this work, we formulated and characterized zein (ZN)/chitosan (CS) stabilized Pickering emulsion. The prepared emulsions were firstly characterized by droplet size after preparation and after storage for one month at room temperature as well as after the addition of prebiotic gum Arabic (GA). Rheological measurements were further carried out to see the behavior and stability of these emulsions after storage. Thereafter, vit-D3 was encapsulated, and the antioxidant activity of the emulsions system were evaluated. The results showed that no significant change in the mean droplet diameter of the emulsions was observed after storage for a month. This claim was further confirmed by their rheological measurements particularly, the emulsions prepared with ZN/CS ratio of 1:2 having 50% oil contents exhibited significant stability. GA addition caused a gradual increase in the droplet size up to some level, after which it led to complete destabilization of the emulsion. Finally, to protect and deliver, vit-D3 was successfully loaded in these emulsions. No significant difference in the DPPH radical scavenging activity of the vit-D3 encapsulated emulsions was observed, showing their capability as delivery vehicles irrespective of their composition.
Collapse
Affiliation(s)
- Bakht Ramin Shah
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute ofAquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic.
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Jan Mráz
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute ofAquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
10
|
Roy S, Rhim JW. Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. Int J Biol Macromol 2021; 193:2038-2046. [PMID: 34774596 DOI: 10.1016/j.ijbiomac.2021.11.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
A functional carrageenan/agar-based film was prepared by combining tea tree oil Pickering emulsion (PET) and zinc sulfide nanoparticles (ZnSNP). PET was formulated using tea tree essential oil stabilized with nanocellulose fibers. PET and ZnSNPs were uniformly dispersed in the binary polymer matrix and formed compatible films. The incorporation of ZnSNPs improved the mechanical strength, whereas PET slightly decreased the strength, but the combined addition of ZnSNP and PET maintained the mechanical strength with slightly improved flexibility. The addition of ZnSNP and PET, alone or in combination, slightly improved the water vapor barrier, water resistance, and thermal stability of the film. In addition, the carrageenan/agar-based composite membrane showed distinct antioxidant and antibacterial activity. The ZnSNP and PET incorporated binary composite films with enhanced physical and functional properties are likely to be used in active food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|