1
|
Li S, Dan X, Chen H, Li T, Liu B, Ju Y, Li Y, Lei L, Fan X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact Mater 2024; 40:597-623. [PMID: 39239261 PMCID: PMC11375146 DOI: 10.1016/j.bioactmat.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Tissue engineering technology has advanced rapidly in recent years, offering opportunities to construct biologically active tissues or organ substitutes to repair or even enhance the functions of diseased tissues and organs. Tissue-engineered scaffolds rebuild the extracellular microenvironment by mimicking the extracellular matrix. Fibrin-based scaffolds possess numerous advantages, including hemostasis, high biocompatibility, and good degradability. Fibrin scaffolds provide an initial matrix that facilitates cell migration, differentiation, proliferation, and adhesion, and also play a critical role in cell-matrix interactions. Fibrin scaffolds are now widely recognized as a key component in tissue engineering, where they can facilitate tissue and organ defect repair. This review introduces the properties of fibrin, including its composition, structure, and biology. In addition, the modification and cross-linking modes of fibrin are discussed, along with various forms commonly used in tissue engineering. We also describe the biofunctionalization of fibrin. This review provides a detailed overview of the use and applications of fibrin in skin, bone, and nervous tissues, and provides novel insights into future research directions for clinical treatment.
Collapse
Affiliation(s)
- Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tong Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Niknezhad SV, Mehrali M, Khorasgani FR, Heidari R, Kadumudi FB, Golafshan N, Castilho M, Pennisi CP, Hasany M, Jahanshahi M, Mehrali M, Ghasemi Y, Azarpira N, Andresen TL, Dolatshahi-Pirouz A. Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria. Bioact Mater 2024; 38:540-558. [PMID: 38872731 PMCID: PMC11170101 DOI: 10.1016/j.bioactmat.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 06/15/2024] Open
Abstract
Bacteria can be programmed to deliver natural materials with defined biological and mechanical properties for controlling cell growth and differentiation. Here, we present an elastic, resilient and bioactive polysaccharide derived from the extracellular matrix of Pantoea sp. BCCS 001. Specifically, it was methacrylated to generate a new photo crosslinkable hydrogel that we coined Pantoan Methacrylate or put simply PAMA. We have used it for the first time as a tissue engineering hydrogel to treat VML injuries in rats. The crosslinked PAMA hydrogel was super elastic with a recovery nearing 100 %, while mimicking the mechanical stiffness of native muscle. After inclusion of thiolated gelatin via a Michaelis reaction with acrylate groups on PAMA we could also guide muscle progenitor cells into fused and aligned tubes - something reminiscent of mature muscle cells. These results were complemented by sarcomeric alpha-actinin immunostaining studies. Importantly, the implanted hydrogels exhibited almost 2-fold more muscle formation and 50 % less fibrous tissue formation compared to untreated rat groups. In vivo inflammation and toxicity assays likewise gave rise to positive results confirming the biocompatibility of this new biomaterial system. Overall, our results demonstrate that programmable polysaccharides derived from bacteria can be used to further advance the field of tissue engineering. In greater detail, they could in the foreseeable future be used in practical therapies against VML.
Collapse
Affiliation(s)
- Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Nasim Golafshan
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 3584 CX, the Netherlands
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260, Gistrup, Denmark
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | | | - Mohammad Mehrali
- Faculty of Engineering Technology, Department of Thermal and Fluid Engineering (TFE), University of Twente, 7500 AE, Enschede, the Netherlands
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas L. Andresen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | |
Collapse
|
3
|
Sabetkish S, Currie P, Meagher L. Recent trends in 3D bioprinting technology for skeletal muscle regeneration. Acta Biomater 2024; 181:46-66. [PMID: 38697381 DOI: 10.1016/j.actbio.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Skeletal muscle is a pro-regenerative tissue, that utilizes a tissue-resident stem cell system to effect repair upon injury. Despite the demonstrated efficiency of this system in restoring muscle mass after many acute injuries, in conditions of severe trauma such as those evident in volumetric muscle loss (VML) (>20 % by mass), this self-repair capability is unable to restore tissue architecture, requiring interventions which currently are largely surgical. As a possible alternative, the generation of artificial muscle using tissue engineering approaches may also be of importance in the treatment of VML and muscle diseases such as dystrophies. Three-dimensional (3D) bioprinting has been identified as a promising technique for regeneration of the complex architecture of skeletal muscle. This review discusses existing treatment strategies following muscle damage, recent progress in bioprinting techniques, the bioinks used for muscle regeneration, the immunogenicity of scaffold materials, and in vitro and in vivo maturation techniques for 3D bio-printed muscle constructs. The pros and cons of these bioink formulations are also highlighted. Finally, we present the current limitations and challenges in the field and critical factors to consider for bioprinting approaches to become more translationa and to produce clinically relevant engineered muscle. STATEMENT OF SIGNIFICANCE: This review discusses the physiopathology of muscle injuries and existing clinical treatment strategies for muscle damage, the types of bioprinting techniques that have been applied to bioprinting of muscle, and the bioinks commonly used for muscle regeneration. The pros and cons of these bioinks are highlighted. We present a discussion of existing gaps in the literature and critical factors to consider for the translation of bioprinting approaches and to produce clinically relevant engineered muscle. Finally, we provide insights into what we believe will be the next steps required before the realization of the application of tissue-engineered muscle in humans. We believe this manuscript is an insightful, timely, and instructive review that will guide future muscle bioprinting research from a fundamental construct creation approach, down a translational pathway to achieve the desired impact in the clinic.
Collapse
Affiliation(s)
- Shabnam Sabetkish
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Peter Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Chi M, Yuan B, Xie Z, Hong J. The Innovative Biomaterials and Technologies for Developing Corneal Endothelium Tissue Engineering Scaffolds: A Review and Prospect. Bioengineering (Basel) 2023; 10:1284. [PMID: 38002407 PMCID: PMC10669703 DOI: 10.3390/bioengineering10111284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Corneal transplantation is the only treatment for corneal endothelial blindness. However, there is an urgent need to find substitutes for corneal endothelium grafts due to the global shortage of donor corneas. An emerging research field focuses on the construction of scaffold-based corneal endothelium tissue engineering (CETE). Long-term success in CETE transplantation may be achieved by selecting the appropriate biomaterials as scaffolds of corneal endothelial cells and adding bioactive materials to promote cell activity. This article reviews the research progress of CETE biomaterials in the past 20 years, describes the key characteristics required for corneal endothelial scaffolds, and summarizes the types of materials that have been reported. Based on these, we list feasible improvement strategies for biomaterials innovation. In addition, we describe the improved techniques for the scaffolds' surface topography and drug delivery system. Some promising technologies for constructing CETE are proposed. However, some questions have not been answered yet, and clinical trials and industrialization should be carried out with caution.
Collapse
Affiliation(s)
- Miaomiao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| | - Bowei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| | - Zijun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| |
Collapse
|
5
|
Kasimu A, Zhu H, Meng Z, Qiu Z, Wang Y, Li D, He J. Development of Electro-Conductive Composite Bioinks for Electrohydrodynamic Bioprinting with Microscale Resolution. Adv Biol (Weinh) 2023; 7:e2300056. [PMID: 37062755 DOI: 10.1002/adbi.202300056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Indexed: 04/18/2023]
Abstract
Bioprinting has attracted extensive attention in the field of tissue engineering due to its unique capability in constructing biomimetic tissue constructs in a highly controlled manner. However, it is still challenging to reproduce the physical and structural properties of native electroactive tissues due to the poor electroconductivity of current bioink systems as well as the limited printing resolution of conventional bioprinting techniques. In this work, an electro-conductive hydrogel is prepared by introducing poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) into an RGD (GGGGRGDSP)-functionalized alginate and fibrin system (RAF), and then electrohydrodynamic (EHD)-bioprinted to form living tissue constructs with microscale resolution. The addition of 0.1 (w/v%) PEDOT: PSS increases the electroconductivity to 1.95 ± 0.21 S m-1 and simultaneously has little effect on cell viability. Compared with pure RAF bioink, the presence of PEDOT: PSS expands the printable parameters for EHD-bioprinting, and hydrogel filaments with the smallest feature size of 48.91 ± 3.44 µm can be obtained by further optimizing process parameters. Furthermore, the EHD-bioprinted electro-conductive living tissue constructs with improved resolution show good viability (>85%). The synergy of the advanced electro-conductive hydrogel and EHD-bioprinting presented here may provide a promising approach for engineering electro-conductive and cell-laden constructs for electroactive tissue engineering.
Collapse
Affiliation(s)
- Ayiguli Kasimu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zijie Meng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yutao Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Chen X, Fazel Anvari-Yazdi A, Duan X, Zimmerling A, Gharraei R, Sharma N, Sweilem S, Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater 2023; 28:511-536. [PMID: 37435177 PMCID: PMC10331419 DOI: 10.1016/j.bioactmat.2023.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial solutions to create three-dimensional (3D) constructs with architectures and mechanical/biological properties that mimic those of native human tissue or organs. Printed constructs have found wide applications in tissue engineering for repairing or treating tissue/organ injuries, as well as in vitro tissue modelling for testing or validating newly developed therapeutics and vaccines prior to their use in humans. Successful printing of constructs and their subsequent applications rely on the properties of the formulated bioinks, including the rheological, mechanical, and biological properties, as well as the printing process. This article critically reviews the latest developments in bioinks and biomaterial solutions for extrusion bioprinting, focusing on bioink synthesis and characterization, as well as the influence of bioink properties on the printing process. Key issues and challenges are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- X.B. Chen
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Fazel Anvari-Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - X. Duan
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Zimmerling
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - R. Gharraei
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - N.K. Sharma
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
| | - S. Sweilem
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - L. Ning
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| |
Collapse
|
7
|
Prabhakaran P, Palaniyandi T, Kanagavalli B, Ram Kumar V, Hari R, Sandhiya V, Baskar G, Rajendran BK, Sivaji A. Prospect and retrospect of 3D bio-printing. Acta Histochem 2022; 124:151932. [PMID: 36027838 DOI: 10.1016/j.acthis.2022.151932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/01/2022]
Abstract
3D bioprinting has become a popular medical technique in recent years. The most compelling rationale for the development of 3D bioprinting is the paucity of biological structures required for the rehabilitation of missing organs and tissues. They're useful in a multitude of domains, including disease modelling, regenerative medicine, tissue engineering, drug discovery with testing, personalised medicine, organ development, toxicity studies, and implants. Bioprinting requires a range of bioprinting technologies and bioinks to finish their procedure, that Inkjet-based bioprinting, extrusion-based bioprinting, laser-assisted bioprinting, stereolithography-based bioprinting, and in situ bioprinting are some of the technologies listed here. Bioink is a 3D printing material that is used to construct engineered artificial living tissue. It can be constructed solely for cells, but it usually includes a carrier substance that envelops the cells, then there's Agarose-based bioinks, alginate-based bioinks, collagen-based bioinks, and hyaluronic acid-based bioinks, to name a few. Here we presented about the different bioprinting methods with the use of bioinks in it and then Prospected over various applications in different fields.
Collapse
Affiliation(s)
- Pranav Prabhakaran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Thirunavukkarsu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India; Department of Anatomy, Biomedical Reseach Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - B Kanagavalli
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - V Ram Kumar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Rajeswari Hari
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - V Sandhiya
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | | | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
8
|
Gao Q, Kim BS, Gao G. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks. Mar Drugs 2021; 19:708. [PMID: 34940707 PMCID: PMC8708555 DOI: 10.3390/md19120708] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022] Open
Abstract
Alginate is a natural polysaccharide that typically originates from various species of algae. Due to its low cost, good biocompatibility, and rapid ionic gelation, the alginate hydrogel has become a good option of bioink source for 3D bioprinting. However, the lack of cell adhesive moieties, erratic biodegradability, and poor printability are the critical limitations of alginate hydrogel bioink. This review discusses the pivotal properties of alginate hydrogel as a bioink for 3D bioprinting technologies. Afterward, a variety of advanced material formulations and biofabrication strategies that have recently been developed to overcome the drawbacks of alginate hydrogel bioink will be focused on. In addition, the applications of these advanced solutions for 3D bioprinting of tissue/organ mimicries such as regenerative implants and in vitro tissue models using alginate-based bioink will be systematically summarized.
Collapse
Affiliation(s)
- Qiqi Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China;
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626841, Kyungnam, Korea;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China;
- Department of Medical Technology, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China
| |
Collapse
|
9
|
Kim D, Hwangbo H, Kim G. Engineered Myoblast-Laden Collagen Filaments Fabricated Using a Submerged Bioprinting Process to Obtain Efficient Myogenic Activities. Biomacromolecules 2021; 22:5042-5051. [PMID: 34783537 DOI: 10.1021/acs.biomac.1c01006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The skeletal muscle tissue comprises a hierarchical fibrous structure with fully aligned myofibers. To obtain a unique aligned engineering construct for regenerating muscle tissue, we adopted a submerged bioprinting process. Here, 3 wt % collagen and 6 wt % alginate solutions were used as a matrix cell-encapsulating bioink and supporting solution in the printing bath, respectively. By manipulating the processing parameters (various alginate weight fractions in the bath, nozzle moving speed, and hydrostatic pressure), cell-laden filaments (∼50 μm in diameter) were successfully fabricated. They presented a high degree of alignment of the fibrillated collagen and meaningful initial viability (∼90%) of the C2C12 myoblasts. In vitro cellular responses indicated that fully aligned F-actin filaments of myoblasts were developed, resulting in a high degree of alignment/formation of myotubes, compared to that in the controls (>100 μm diameter of cell-laden filaments). Furthermore, the expression levels of various myogenic genes (Myod1, Myh2, and Myog) were measured using a reverse transcription polymerase chain reaction on day 21 of the cell culture, and the results showed that the cell-laden filaments with a small diameter had considerably greater gene expression levels (2.2-8-fold) than those with a relatively large diameter. Thus, the printing process described herein can provide a new potential biofabricating platform to obtain cell-laden engineering constructs for various tissues.
Collapse
Affiliation(s)
- Dongyun Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hanjun Hwangbo
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|