1
|
Hassanein WS, İspirli H, Dertli E, Yilmaz MT. Structural characterization of potato starch modified by a 4,6-α-glucanotransferase B from Lactobacillus reuteri E81. Int J Biol Macromol 2023:124988. [PMID: 37230452 DOI: 10.1016/j.ijbiomac.2023.124988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The recent reports have revealed that increase in amount of α-1,6 linkages by modification of potato starch with enzyme (glycosyltransferases) treatment gains slowly digestible properties to the starch; however, the formation of new α-1,6-glycosidic linkages diminish the thermal resistance of the starch granules. In this study, a putative GtfB-E81, (a 4,6-α-glucanotransferase-4,6-αGT) from L. reuteri E81 was firstly used to produce a short length of α-1,6 linkages. NMR results revealed that external short chains mostly comprised of 1-6 glucosyl units were newly produced in potato starch, and the α-1,6 linkage ratio was significantly increased from 2.9 % to 36.8 %, suggesting that this novel GtfB-E81 might have potentially an efficient transferase activity. In our study, native and GtfB-E81 modified starches showed fundamental similarities with respect to their molecular properties and treatment of native potato starch with GtfB-E81 did not remarkably change thermal stability of the potato starch, which seems to be very prominent for the food industry given the significantly decreased thermal stability results obtained for the enzyme modified starches reported in the literature. Therefore, the results of this study should open up emerging perspectives for regulating slowly digestible characteristics of potato starch in future studies without a significant change in the molecular, thermal, and crystallographic properties.
Collapse
Affiliation(s)
- Wael S Hassanein
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, 21589 Jeddah, Saudi Arabia
| | - Hümeyra İspirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Enes Dertli
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Istanbul 34000, Turkey
| | - Mustafa Tahsin Yilmaz
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Rao D, Huo R, Yan Z, Guo Z, Liu W, Lu M, Luo H, Tao X, Yang W, Su L, Chen S, Wang L, Wu J. Multiple approaches of loop region modification for thermostability improvement of 4,6-α-glucanotransferase from Limosilactobacillus fermentum NCC 3057. Int J Biol Macromol 2023; 233:123536. [PMID: 36740130 DOI: 10.1016/j.ijbiomac.2023.123536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
4,6-α-glucanotransferase (4,6-α-GT), as a member of the glycoside hydrolase 70 (GH70) family, converts starch/maltooligosaccharides into α,1-6 bond-containing α-glucan and possesses potential applications in food, medical and related industries but does not satisfy the high-temperature requirement due to its poor thermostability. In this study, a 4,6-α-GT (ΔGtfB) from Limosilactobacillus fermentum NCC 3057 was used as a model enzyme to improve its thermostability. The loops of ΔGtfB as the target region were optimized using directed evolution, sequence alignment, and computer-aided design. A total of 11 positive mutants were obtained and iteratively combined to obtain a combined mutant CM9, with high resistance to temperature (50 °C). The activity of mutant CM9 was 2.08-fold the activity of the wild type, accompanied by a 5 °C higher optimal temperature, a 5.76 °C higher melting point (Tm, 59.46 °C), and an 11.95-fold longer half-life time (t1/2). The results showed that most of the polar residues in the loop region of ΔGtfB are mutated into rigid proline residues. Molecular dynamics simulation demonstrated that the root mean square fluctuation of CM9 significantly decreased by "Breathing" movement reduction of the loop region. This study provides a new strategy for improving the thermostability of 4,6-α-GT through rational loop region modification.
Collapse
Affiliation(s)
- Deming Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Runtian Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhengfei Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weiqiong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mengwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weikang Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
3
|
Um HE, Park BR, Kim YM, Lee BH. Slow digestion properties of long-sized isomaltooligosaccharides synthesized by a transglucosidase from Thermoanaerobacter thermocopriae. Food Chem 2023; 417:135892. [PMID: 36933421 DOI: 10.1016/j.foodchem.2023.135892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023]
Abstract
Isomaltooligosaccharides (IMOs) are widely used as prebiotic ingredients that promote colon health; however, recent studies revealed that these are slowly hydrolyzed to glucose within the small intestine. Here, novel α-glucans with a higher number of α-1,6 linkages were synthesized from maltodextrins using the Thermoanaerobacter thermocopriae-derived transglucosidase (TtTG) to decrease susceptibility to hydrolysis and improve slow digestion properties. The synthesized long-sized IMOs (l-IMOs; 70.1% of α-1,6 linkages), comprising 10-12 glucosyl units, exhibited slow hydrolysis to glucose when compared to commercial IMOs under treatment with mammalian α-glucosidase level. In male mice, the ingestion of l-IMOs significantly decreased the post-prandial glycemic response compared to other samples (p < 0.05). Therefore, enzymatically synthesized l-IMOs can be applied as functional ingredients for the modulation of blood glucose homeostasis in obesity, Type 2 diabetes, and other chronic diseases.
Collapse
Affiliation(s)
- Ha-Eun Um
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Bo-Ram Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea.
| | - Young Min Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
4
|
Ji H, Liu J, McClements DJ, Bai Y, Li Z, Chen L, Qiu C, Zhan X, Jin Z. Malto-oligosaccharides as critical functional ingredient: a review of their properties, preparation, and versatile applications. Crit Rev Food Sci Nutr 2022; 64:3674-3686. [PMID: 36260087 DOI: 10.1080/10408398.2022.2134291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Malto-oligosaccharides (MOS) are α-1,4 glycosidic linked linear oligosaccharides of glucose, which have a diverse range of functional applications in the food, pharmaceutical, and other industries. They can be used to modify the physicochemical properties of foods thereby improving their quality attributes, or they can be included as prebiotics to improve their nutritional attributes. The degree of polymerization of MOS can be controlled by using specific enzymes, which means their functionality can be tuned for specific applications. In this article, we review the chemical structure, physicochemical properties, preparation, and functional applications of MOS in the food, health care, and other industries. Besides, we offer an overview for this saccharide from the perspective of prospect functional ingredient, which we feel lacks in the current literature. MOS could be expected to provide a novel promising substitute for functional oligosaccharides.
Collapse
Affiliation(s)
- Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jialin Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhitao Li
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Long Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaobei Zhan
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|