1
|
Tsai C, Li H, Kuchayita KK, Huang H, Su W, Cheng C. Exfoliated 2D Nanosheet-Based Conjugated Polymer Composites with P-N Heterojunction Interfaces for Highly Efficient Electrocatalytic Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407061. [PMID: 39083301 PMCID: PMC11423191 DOI: 10.1002/advs.202407061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Indexed: 09/26/2024]
Abstract
We have achieved a significant breakthrough in the preparation and development of two-dimensional nanocomposites with P-N heterojunction interfaces as efficient cathode catalysts for electrochemical hydrogen evolution reaction (HER) and iodide oxidation reaction (IOR). P-type acid-doped polyaniline (PANI) and N-type exfoliated molybdenum disulfide (MoS2) nanosheets can form structurally stable composites due to formation of P-N heterojunction structures at their interfaces. These P-N heterojunctions facilitate charge transfer from PANI to MoS2 structures and thus significantly enhance the catalytic efficiency of MoS2 in the HER and IOR. Herein, by combining efficient sodium-functionalized chitosan-assisted MoS2 exfoliation, electropolymerization of PANI on nickel foam (NF) substrate, and electrochemical activation, controllable and scalable Na-Chitosan/MoS2/PANI/NF electrodes are successfully constructed as non-noble metal-based electrochemical catalysts. Compared to a commercial platinum/carbon (Pt/C) catalyst, the Na-Chitosan/MoS2/PANI/NF electrode exhibits significantly lower resistance and overpotential, a similar Tafel slope, and excellent catalytic stability at high current densities, demonstrating excellent catalytic performance in the HER under acidic conditions. More importantly, results obtained from proton exchange membrane fuel cell devices confirm the Na-Chitosan/MoS2/PANI/NF electrode exhibits a low turn-on voltage, high current density, and stable operation at 2 V. Thus, this system holds potential as a replacement for Pt/C with feasibility for applications in energy-related fields.
Collapse
Affiliation(s)
- Cheng‐Yu Tsai
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei10607Taiwan
| | - Hsu‐Sheng Li
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei10607Taiwan
| | - Kumasser Kusse Kuchayita
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei10607Taiwan
| | - Hsin‐Chih Huang
- Department of Materials Science and EngineeringNational Formosa UniversityYunlin63201Taiwan
| | - Wei‐Nien Su
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei10607Taiwan
| | - Chih‐Chia Cheng
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei10607Taiwan
- Advanced Membrane Materials Research CenterNational Taiwan University of Science and TechnologyTaipei10607Taiwan
| |
Collapse
|
2
|
Shipovskaya AB, Ushakova OS, Volchkov SS, Shipenok XM, Shmakov SL, Gegel NO, Burov AM. Chiral Nanostructured Glycerohydrogel Sol-Gel Plates of Chitosan L- and D-Aspartate: Supramolecular Ordering and Optical Properties. Gels 2024; 10:427. [PMID: 39057450 PMCID: PMC11275427 DOI: 10.3390/gels10070427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
A comprehensive study was performed on the supramolecular ordering and optical properties of thin nanostructured glycerohydrogel sol-gel plates based on chitosan L- and D-aspartate and their individual components in the X-ray, UV, visible, and IR ranges. Our comparative analysis of chiroptical characteristics, optical collimated transmittance, the average cosine of the scattering angle, microrelief and surface asymmetry, and the level of structuring shows a significant influence of the wavelength range of electromagnetic radiation and the enantiomeric form of aspartic acid on the functional characteristics of the sol-gel materials. At the macrolevel of the supramolecular organization, a complex topography of the surface layer and a dense amorphous-crystalline ordering of polymeric substances were revealed, while at the nanolevel, there were two forms of voluminous scattering domains: nanospheres with diameters of 60-120 nm (L-) and 45-55 nm (D-), anisometric particles of lengths within ~100-160 (L-) and ~85-125 nm (D-), and widths within ~10-20 (L-) and ~20-30 nm (D-). The effect of optical clearing on glass coated with a thin layer of chitosan L-(D-)aspartate in the near-UV region was discovered (observed for the first time for chitosan-based materials). The resulting nanocomposite shape-stable glycerohydrogels seem promising for sensorics and photonics.
Collapse
Affiliation(s)
- Anna B. Shipovskaya
- Institute of Chemistry, Saratov State University, Saratov 410012, Russia; (A.B.S.); (O.S.U.); (X.M.S.); (N.O.G.)
| | - Olga S. Ushakova
- Institute of Chemistry, Saratov State University, Saratov 410012, Russia; (A.B.S.); (O.S.U.); (X.M.S.); (N.O.G.)
| | - Sergei S. Volchkov
- Department of Physics, Yuri Gagarin Saratov State Technical University, Saratov 410054, Russia;
- Saratov Branch, Institute of Radio Engineering and Electronics of Russian Academy of Sciences, 38 Zelyonaya St., Saratov 410019, Russia
| | - Xenia M. Shipenok
- Institute of Chemistry, Saratov State University, Saratov 410012, Russia; (A.B.S.); (O.S.U.); (X.M.S.); (N.O.G.)
| | - Sergei L. Shmakov
- Institute of Chemistry, Saratov State University, Saratov 410012, Russia; (A.B.S.); (O.S.U.); (X.M.S.); (N.O.G.)
| | - Natalia O. Gegel
- Institute of Chemistry, Saratov State University, Saratov 410012, Russia; (A.B.S.); (O.S.U.); (X.M.S.); (N.O.G.)
| | - Andrey M. Burov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov 410049, Russia;
| |
Collapse
|
3
|
Malinkina ON, Shmakov SL, Shipovskaya AB. Structure, the energy, sorption and biological properties of chiral salts of chitosan with l- and d-ascorbic acid. Int J Biol Macromol 2024; 257:128731. [PMID: 38101672 DOI: 10.1016/j.ijbiomac.2023.128731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/18/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The influence of l- and d-ascorbic acid diastereomers on the structure, supramolecular ordering, energy, sorption and biological properties of heterochiral (D-L) and homochiral (D-D) salt complexes of chitosan (d-glucan)-acid was studied. The thermal effect of dissolving chitosan in l-ascorbic acid and the protonation degree of (D-L)-salts were lower than those in the medium of the d-isomer. Homochiral (D-D) salts, in contrast to heterochiral (D-L) ones, are distinguished by a more developed system of intermolecular and intramolecular contacts, a more ordered and equilibrium supramolecular organization of macrochains, a higher crystallinity degree, and a smaller amount of crystallization water. The sorption isotherms of chiral salts were approximated by the thermal equation of sorption and the superposition of the Langmuir and Flory-Huggins isotherms. Significant differences were found in the limiting value and energy of sorption, the constant of adsorption equilibrium, the limiting sorption capacity of the localized mode of water, and the Gibbs mixing energy. Biotesting on non-vascular (Scenedesmus quadricauda) and vascular eukaryotes (Linum usitatissimum) revealed the growth-stimulating effect of the D-D salts. The obtained results confirm our hypothesis of the homochiral salt complexes d-glucan-d-ascorbic acid best corresponding to the principles of the functional organization of biological objects.
Collapse
Affiliation(s)
- Olga N Malinkina
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russian Federation.
| | - Sergei L Shmakov
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russian Federation
| | - Anna B Shipovskaya
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russian Federation
| |
Collapse
|
4
|
Shmakov SL, Babicheva TS, Kurochkina VA, Lugovitskaya TN, Shipovskaya AB. Structural and Morphological Features of Anisotropic Chitosan Hydrogels Obtained by Ion-Induced Neutralization in a Triethanolamine Medium. Gels 2023; 9:876. [PMID: 37998966 PMCID: PMC10670621 DOI: 10.3390/gels9110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
For the first time, anisotropic hydrogel material with a highly oriented structure was obtained by the chemical reaction of polymer-analogous transformation of chitosan glycolate-chitosan base using triethanolamine (TEA) as a neutralizing reagent. Tangential bands or concentric rings, depending on the reaction conditions, represent the structural anisotropy of the hydrogel. The formation kinetics and the ratio of the positions of these periodic structures are described by the Liesegang regularities. Detailed information about the bands is given (formation time, coordinate, width, height, and formation rate). The supramolecular ordering anisotropy of the resulting material was evaluated both by the number of Liesegang bands (up to 16) and by the average values of the TEA diffusion coefficient ((15-153) × 10-10 and (4-33) × 10-10 m2/s), corresponding to the initial and final phase of the experiment, respectively. The minimum chitosan concentration required to form a spatial gel network and, accordingly, a layered anisotropic structure was estimated as 1.5 g/dL. Morphological features of the structural anisotropic ordering of chitosan Liesegang structures are visualized by scanning electron microscopy. The hemocompatibility of the material obtained was tested, and its high sorption-desorption properties were evaluated using the example of loading-release of cholecalciferol (loading degree ~35-45%, 100% desorption within 25-28 h), which was observed for a hydrophobic substance inside a chitosan-based material for the first time.
Collapse
Affiliation(s)
- Sergei L. Shmakov
- Chair of Polymers, Institute of Chemistry, Saratov State University, 83 Astrakhanskaya St., 410012 Saratov, Russia (A.B.S.)
| | - Tatiana S. Babicheva
- Chair of Polymers, Institute of Chemistry, Saratov State University, 83 Astrakhanskaya St., 410012 Saratov, Russia (A.B.S.)
| | - Valentina A. Kurochkina
- Chair of Polymers, Institute of Chemistry, Saratov State University, 83 Astrakhanskaya St., 410012 Saratov, Russia (A.B.S.)
| | - Tatiana N. Lugovitskaya
- Institute of New Materials and Technologies, Ural Federal State University, 19 Mira St., 620002 Yekaterinburg, Russia;
| | - Anna B. Shipovskaya
- Chair of Polymers, Institute of Chemistry, Saratov State University, 83 Astrakhanskaya St., 410012 Saratov, Russia (A.B.S.)
| |
Collapse
|
5
|
Esparza-Flores EE, Cardoso FD, Siquiera LB, Santagapita PR, Hertz PF, Rodrigues RC. Genipin crosslinked porous chitosan beads as robust supports for β-galactosidase immobilization: Characterization, stability, and bioprocessing potential. Int J Biol Macromol 2023; 250:126234. [PMID: 37567531 DOI: 10.1016/j.ijbiomac.2023.126234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
This study aimed to modify the porosity of chitosan beads using Na2CO3 as a porogen agent and to crosslink them with genipin for the immobilization of β-galactosidase from Aspergillus oryzae. Immobilization was performed under four different pH conditions (4.5, 6.0, 7.5, and 9.0), resulting in biocatalysts named B4, B6, B7, and B9, respectively. The immobilized enzymes were characterized for immobilization parameters and stability, including thermal, pH, storage, and operational stability. The optimal conditions for the support were determined as 50 mM Na2CO3. The biocatalyst exhibited nearly 100 % retention of initial activity after 5 h of incubation at different pH conditions and showed improved thermal stability compared to the free enzyme across all pH conditions. After 50 cycles of lactose hydrolysis, all biocatalysts retained at least 71 % of their initial activity, with B6 retaining nearly 100 %. Scanning electron microscopy revealed structural modifications, particularly in B4, leading to weakened support structure after reuse. Continuous lactose hydrolysis showed increased productivity from 41.3 to 48.1 g L-1 h-1 for B6, with 78.1 % retention of initial capacity. All biocatalysts retained >95 % activity when stored at 4 °C for 20 weeks, highlighting their suitability for enzyme immobilization in continuous and discontinuous bioprocesses.
Collapse
Affiliation(s)
- Elí Emanuel Esparza-Flores
- Enzymology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil; Biocatalysis and Enzyme Technology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil
| | - Fernanda Dias Cardoso
- Enzymology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil
| | - Larisa Bertoldo Siquiera
- Enzymology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil
| | - Patricio R Santagapita
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica & CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Plinho F Hertz
- Enzymology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil
| | - Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Huang Y, Tang H, Liu D, Liu Y, Meng X, Chen B, Zou Z. Cyclosporine A-loaded chitosan extra-fine particles for deep pulmonary drug delivery: In vitro and in vivo evaluation. J Control Release 2023; 362:243-256. [PMID: 37634553 DOI: 10.1016/j.jconrel.2023.08.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
In this study, the extra-fine dry powder inhalers (DPIs) with chitosan (CS) as carrier were successfully prepared by ionic gel method combined with spray drying technique for deep pulmonary drug delivery of Cyclosporine A (CsA), using sodium hyaluronate (SHA) and sodium polyglutamate (SPGA) as polyanions. The CsA-loaded DPIs of CS-SHA-CsA and CS-SPGA-CsA were spherical particles with wrinkles on the surface, which were more conducive to improving the aerosol properties. The aerodynamic evaluation of CS-SHA-CsA and CS-SPGA-CsA showed that the fine particle fraction (FPF) reached up to 79.22 ± 2.12% and 81.55 ± 0.43%, while the emitted fraction (EF) reached 77.15 ± 1.46% and 78.29 ± 2.10%. In addition, the mass median aerodynamic diameter (MMAD) was calculated as 1.58 ± 0.04 μm and 1.94 ± 0.02 μm for CS-SHA-CsA and CS-SPGA-CsA, indicating that they were all extra-fine particles (d < 2 μm). These in vitro aerodynamic results showed that CS-SHA-CsA and CS-SPGA-CsA could reach the smaller airways, further improving therapeutic efficiency. The cell viability on A549 cell line results showed that CS-SHA-CsA and CS-SPGA-CsA were safe to deliver CsA to lungs. The in vivo pharmacokinetics consequence proved that inhalation administration of CS-SHA-CsA and CS-SPGA-CsA could significantly improve the bioavailability of CsA in vivo compared with oral administration of Neoral®, effectively reducing the risk of a series of adverse effects caused by systemic overexposure. In addition, the safety and compatibility of DPIs using SHA, SPGA, and CS as carriers for pulmonary drug delivery was verified by in vivo repeated dose inhalation toxicity. From these findings, the extra-fine DPIs with CS as carrier could be a viable delivery option for the deep pulmonary drug delivery of CsA relative to orally administered drug.
Collapse
Affiliation(s)
- Yongpeng Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Tang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Dongxin Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiangyan Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Zhiyun Zou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
7
|
Shipovskaya AB, Lugovitskaya TN, Zudina IV. Biocidal Activity of Chitosan Aspartate Nanoparticles. Microbiology (Reading) 2023. [DOI: 10.1134/s0026261722602378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
8
|
Lugovitskaya TN, Rogozhnikov DA, Mamyachenkov SV. Controlling the Polyelectrolyte Nature of Sulfite Lignin in Order to Obtain Nanostructures. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|