1
|
Lu Y, Zhang Y, Zhang R, Gao Y, Miao S, Mao L. Different interfaces for stabilizing liquid-liquid, liquid-gel and gel-gel emulsions: Design, comparison, and challenges. Food Res Int 2024; 187:114435. [PMID: 38763682 DOI: 10.1016/j.foodres.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Interfaces play essential roles in the stability and functions of emulsion systems. The quick development of novel emulsion systems (e.g., water-water emulsions, water-oleogel emulsions, hydrogel-oleogel emulsions) has brought great progress in interfacial engineering. These new interfaces, which are different from the traditional water-oil interfaces, and are also different from each other, have widened the applications of food emulsions, and also brought in challenges to stabilize the emulsions. We presented a comprehensive summary of various structured interfaces (stabilized by mixed-layers, multilayers, particles, nanodroplets, microgels etc.), and their characteristics, and designing strategies. We also discussed the applicability of these interfaces in stabilizing liquid-liquid (water-oil, water-water, oil-oil, alcohol-oil, etc.), liquid-gel, and gel-gel emulsion systems. Challenges and future research aspects were also proposed regarding interfacial engineering for different emulsions. Emulsions are interface-dominated materials, and the interfaces have dynamic natures, as the compositions and structures are not constant. Biopolymers, particles, nanodroplets, and microgels differed in their capacity to get absorbed onto the interface, to adjust their structures at the interface, to lower interfacial tension, and to stabilize different emulsions. The interactions between the interface and the bulk phases not only affected the properties of the interface, but also the two phases, leading to different functions of the emulsions. These structured interfaces have been used individually or cooperatively to achieve effective stabilization or better applications of different emulsion systems. However, dynamic changes of the interface during digestion are only poorly understood, and it is still challenging to fully characterize the interfaces.
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yanhui Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Like Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Xie Y, Liu C, Zhang J, Li Y, Li B, Liu S. Crosslinking alginate at water-in-water Pickering emulsions interface to control the interface structure and enhance the stress resistance of the encapsulated probiotics. J Colloid Interface Sci 2024; 655:653-663. [PMID: 37976739 DOI: 10.1016/j.jcis.2023.10.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
HYPOTHESIS The strategies for stabilizing water-in-water (W/W) emulsions include the adsorption of solid particles at the water-water interface and the generation of interfacial films. We hypothesize that if sodium alginate is crosslinked at the water-water interface of W/W Pickering emulsions, the microstructure and rheological properties of the emulsions could be improved, thus enhancing the activity of encapsulated probiotics in simulated gastrointestinal digestion. EXPERIMENTS The W/W Pickering emulsions comprised a dispersed maltodextrin (MD) phase in a continuous hydroxypropyl methylcellulose (HPMC) phase. The crosslinking W/W Pickering emulsion with fine-tuned internal structure was designed by leaching the CaCO3 particles packed in the dispersed phase to release Ca2+ crosslinked with sodium alginate. FINDINGS Confocal laser scanning microscope results revealed sodium alginate crosslinked with Ca2+ at the W/W interface. The rheological results of the crosslinking W/W Pickering emulsions suggested that the loss modulus (G″) was higher than the energy storage modulus (G'). The microstructure indicated that the emulsions formed a dense porous network structure after crosslinking conditions. The viable cell count of Lactobacillus helveticus CICC 22536 (LC) encapsulated in crosslinking W/W Pickering emulsion after simulated gastrointestinal digestion was 7.563 × 107 CFU/mL, which was three orders of magnitude higher than that of naked cells.
Collapse
Affiliation(s)
- Yunxiao Xie
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cui Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Zhang Z, He X, Zeng C, Li Q, Xia H. Preparation of cassava starch-gelatin yolk-shell microspheres by water-in-water emulsion method. Carbohydr Polym 2024; 323:121461. [PMID: 37940319 DOI: 10.1016/j.carbpol.2023.121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
This paper reports the preparation and characterization of gelatin-cassava starch microspheres using the water-in-water emulsion technique. The effects of different weight ratios (10: 0, 9: 1, 8: 2, 7: 3, 6: 4, 5: 5) of starch to gelatin on the morphology, structure, thermal properties, and stability of microspheres were investigated. The morphology results showed that most microspheres had spherical shapes and smooth surfaces. When the weight ratio of starch to gelatin was 5: 5, the prepared microspheres formed a stable yolk-shell structure. The swelling capacity of the microspheres increased with the proportion of gelatin, up to 682.3 %. The gelatin and starch in the microspheres were compatible but not miscible. Compared with the native starch, the crystalline structure of microspheres changed from A-type to a mixture of B-type and V-type, and the relative crystallinity decreased. Differential scanning calorimetry results showed that the melting of microspheres involved both gelatin dissolution and starch gelatinization. Due to the formation of composite microspheres, the starch content decreased, and the release of reducing sugars from the microspheres upon hydrolysis was reduced. The gelatin-cassava starch microspheres are simple to prepare, biocompatible, and can be used as a potential material for microencapsulation.
Collapse
Affiliation(s)
- Zhirenyong Zhang
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Xiaoxue He
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Chaoxi Zeng
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Qingming Li
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Huiping Xia
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| |
Collapse
|
4
|
Nsengiyumva EM, Heitz MP, Alexandridis P. Salt and Temperature Effects on Xanthan Gum Polysaccharide in Aqueous Solutions. Int J Mol Sci 2023; 25:490. [PMID: 38203659 PMCID: PMC10778890 DOI: 10.3390/ijms25010490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Xanthan gum (XG) is a carbohydrate polymer with anionic properties that is widely used as a rheology modifier in various applications, including foods and petroleum extraction. The aim was to investigate the effect of Na+, K+, and Ca2+ on the physicochemical properties of XG in an aqueous solution as a function of temperature. Huggins, Kraemer, and Rao models were applied to determine intrinsic viscosity, [η], by fitting the relative viscosity (ηrel) or specific viscosity (ηsp) of XG/water and XG/salt/water solutions. With increasing temperature in water, Rao 1 gave [η] the closest to the Huggins and Kraemer values. In water, [η] was more sensitive to temperature increase (~30% increase in [η], 20-50 °C) compared to salt solutions (~15-25% increase). At a constant temperature, salt counterions screened the XG side-chain-charged groups and decreased [η] by up to 60% over 0.05-100 mM salt. Overall, Ca2+ was much more effective than the monovalent cations in screening charge. As the salt valency and concentration increased, the XG coil radius decreased, making evident the effect of shielding the intramolecular and intermolecular XG anionic charge. The reduction in repulsive forces caused XG structural contraction. Further, higher temperatures led to chain expansion that facilitated increased intermolecular interactions, which worked against the salt effect.
Collapse
Affiliation(s)
- Emmanuel M. Nsengiyumva
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA;
- Department of Chemistry and Biochemistry, The State University of New York (SUNY) Brockport, Brockport, NY 14420, USA
| | - Mark P. Heitz
- Department of Chemistry and Biochemistry, The State University of New York (SUNY) Brockport, Brockport, NY 14420, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA;
| |
Collapse
|
5
|
Chen J, Guo J, Yang X, Nicolai T. Effect of adding gelatin on the stability of water in water emulsions formed by mixtures of amylopectin and guar gum. Colloids Surf B Biointerfaces 2023; 232:113593. [PMID: 37862946 DOI: 10.1016/j.colsurfb.2023.113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Stable water in water (W/W) emulsions of guar rich droplets dispersed in an amylopectin rich continuous phase (G/A) and the inverse (A/G) can be achieved by adding gelatin and inducing microphase separation of the latter by cooling. In this research, the effect of gelatin on the emulsion stability was further studied by storing the emulsions at 10, 20 and 25 °C. The visual aspect, the microstructure, and the viscosity of the emulsions were investigated at different times during storage at different temperatures and pH. It was found that depending on the conditions, the gelatin phase wetted the interface or formed small discrete microdomains that adsorbed at the interface and dispersed in the bulk phases. The observed differences in morphology and stability are related to the interplay of the rates of aggregation, phase separation of gelatin, which itself depend on the gelatin concentration, temperature and pH. Emulsions could be prepared in this manner that were stable for at least one week and remained visually homogeneous. We believe that this is a promising method to stabilize W/W emulsions as long as the components of the emulsion are incompatible with aggregated gelatin.
Collapse
Affiliation(s)
- Jiafeng Chen
- Dining and Tourism Academy, Guangdong Polytechnic of Science and Trade, Guangzhou 510006, Guangdong, PR China; Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou 510640, PR China; Le Mans Université, IMMM UMR-CNRS 6283, 72085 CEDEX 9 Le Mans, France.
| | - Jian Guo
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou 510640, PR China
| | - Xiaoquan Yang
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou 510640, PR China
| | - Taco Nicolai
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 CEDEX 9 Le Mans, France.
| |
Collapse
|
6
|
Zhang X, Xu W, Li X, Pan G, Chen N, Xie Q, Wang X. Preparation of pH sensitive bacteriostatic W/O/W emulsion microcapsules. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2060-2075. [PMID: 37161405 DOI: 10.1080/09205063.2023.2211499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
This experiment was done to study the zeolite molecular sieve as a drug-binding effector, the non-antibiotic drug potassium diformate uniformly disperse in the internal aqueous phase of the 'egg box' structure formed by pectin-calcium ions. With oil phase as the intermediate phase and Xanthan gum Chitosan as the external water phase, the W/O/W type sustained release bacteriostatic microcapsules with pH response were prepared and characterized by Fourier transform infrared, thermogravimetric, SEM, and TEM. It can be obtained through characterization experiments that the inner water phase, oil phase, and outer water phase were formed by observation, and W/O/W emulsion microcapsules were obtained and the bacteriostasis effect of microcapsules was verified by bacteriostasis experiment. The permeance experiment showed that the molecular sieve was successfully coated in the microsphere. Studying on drug release mechanism and sustaining release performance of composite emulsion microcapsules. In vitro drug release study showed that the encapsulation efficiency and drug loading rate of microcapsules were improved by adding molecular sieve, reaching 12.31% and 61.55%, respectively. At the same time, we observed that the drug release rate slowed down during the simulated intestinal release process, and the drug release kinetics were in line with the first-order kinetic model and Ritger-Peppas model equation. Experiments had proven that the drug-loaded microcapsules exerted a significant bacteriostatic effect on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, with the highest antibacterial rates of 97.25%, 94.05%, and 95.93%, respectively. Therefore, the composite emulsion microcapsules can be used as a new controlled-release drug delivery system in vivo.
Collapse
Affiliation(s)
- XiaoNan Zhang
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - WenQin Xu
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - Xing Li
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - GuangHua Pan
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - NanChun Chen
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficiency Utilization of Resources, Guilin University of Technology, Guilin, China
| | - QingLin Xie
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - XiuLi Wang
- College of Chemical and Biomedical Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
7
|
Badruddoza AZM, Yeoh T, Shah JC, Walsh T. Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. J Pharm Sci 2023; 112:1772-1793. [PMID: 36966902 DOI: 10.1016/j.xphs.2023.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The emulsion-based topical semisolid dosage forms present a high degree of complexity due to their microstructures which is apparent from their compositions comprising at least two immiscible liquid phases, often times of high viscosity. These complex microstructures are thermodynamically unstable, and the physical stability of such preparations is governed by formulation parameters such as phase volume ratio, type of emulsifiers and their concentration, HLB value of the emulsifier, as well as by process parameters such as homogenizer speed, time, temperature etc. Therefore, a detailed understanding of the microstructure in the DP and critical factors that influence the stability of emulsions is essential to ensure the quality and shelf-life of emulsion-based topical semisolid products. This review aims to provide an overview of the main strategies used to stabilize pharmaceutical emulsions contained in semisolid products and various characterization techniques and tools that have been utilized so far to evaluate their long-term stability. Accelerated physical stability assessment using dispersion analyzer tools such as an analytical centrifuge to predict the product shelf-life has been discussed. In addition, mathematical modeling for phase separation rate for non-Newtonian systems like semisolid emulsion products has also been discussed to guide formulation scientists to predict a priori stability of these products.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA.
| | - Thean Yeoh
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Jaymin C Shah
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Taylor Walsh
- Eurofins Lancaster Laboratories Professional Scientific Services, 2425 New Holland Pike, Lancaster, PA 17601, USA
| |
Collapse
|
8
|
Yan S, Regenstein JM, Zhang S, Huang Y, Qi B, Li Y. Edible particle-stabilized water-in-water emulsions: Stabilization mechanisms, particle types, interfacial design, and practical applications. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
9
|
Meng Y, Gantier M, Nguyen TH, Nicolai T, Nicol E. Poly(ethylene oxide)/Gelatin-Based Biphasic Photocrosslinkable Hydrogels of Tunable Morphology for Hepatic Progenitor Cell Encapsulation. Biomacromolecules 2023; 24:789-796. [PMID: 36655630 DOI: 10.1021/acs.biomac.2c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Macroporous hydrogels have great potential for biomedical applications. Liquid or gel-like pores were created in a photopolymerizable hydrogel by forming water-in-water emulsions upon mixing aqueous solutions of gelatin and a poly(ethylene oxide) (PEO)-based triblock copolymer. The copolymer constituted the continuous matrix, which dominated the mechanical properties of the hydrogel once photopolymerized. The gelatin constituted the dispersed phase, which created macropores in the hydrogel. The microstructures of the porous hydrogel were determined by the volume fraction of the gelatin phase. When volume fractions were close to 50 v%, free-standing hydrogels with interpenetrated morphology can be obtained thanks to the addition of a small amount of xanthan. The hydrogels displayed Young's moduli ranging from 5 to 30 kPa. They have been found to be non-swellable and non-degradable in physiological conditions. Preliminary viability tests with hepatic progenitor cells embedded in monophasic PEO-based hydrogels showed rapid mortality of the cells, whereas encouraging viability was observed in PEO-based triblock copolymer/gelatin macroporous hydrogels. The latter has the potential to be used in cell therapy.
Collapse
Affiliation(s)
- Yuwen Meng
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| | - Malika Gantier
- GoLiver Therapeutics, IRSUN, 8 quai Moncousu - BP 70721, Nantes Cedex 44007, France.,Center for Research in Transplantation and Translational Immunology, UMR 1064, INSERM, Nantes Université, NantesF-44000, France
| | - Tuan Huy Nguyen
- GoLiver Therapeutics, IRSUN, 8 quai Moncousu - BP 70721, Nantes Cedex 44007, France
| | - Taco Nicolai
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| | - Erwan Nicol
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| |
Collapse
|
10
|
Esquena J. Recent advances on water-in-water emulsions in segregative systems of two water-soluble polymers. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
11
|
The pH-dependent phase separation kinetics of type-A gelatin and dextran with different initial microstructures. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zamani Z, Razavi SMA. Steady shear rheological properties, microstructure and stability of water in water emulsions made with basil seed gum and waxy corn starch or high pressure-treated waxy corn starch. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Daradmare S, Lee CS. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches. Colloids Surf B Biointerfaces 2022; 219:112795. [PMID: 36049253 DOI: 10.1016/j.colsurfb.2022.112795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/21/2022]
Abstract
An aqueous two-phase system (ATPS) is a system with liquid-liquid phase separation and shows great potential for the extraction, separation, purification, and enrichment of proteins, membranes, viruses, enzymes, nucleic acids, and other biomolecules because of its simplicity, biocompatibility, and wide applicability [1-4]. The clear aqueous-aqueous interface of ATPSs is highly advantageous for their implementation, therefore making ATPSs a green alternative approach to replace conventional emulsion systems, such as water-in-oil droplets. All aqueous emulsions (water-in-water, w-in-w) hold great promise in the biomedical field as glucose sensors [5] and promising carriers for the encapsulation and release of various biomolecules and nonbiomolecules [6-10]. However, the ultralow interfacial tension between the two phases is a hurdle in generating w-in-w emulsion droplets. In the past, bulk emulsification and electrospray techniques were employed for the generation of w-in-w emulsion droplets and the fabrication of microparticles and microcapsules in the later stage. Bulk emulsification is a simple and low-cost technique; however, it generates polydisperse w-in-w emulsion droplets. Another technique, electrospray, involves easy experimental setups that can generate monodisperse but nonspherical w-in-w emulsion droplets. In comparison, microfluidic platforms provide monodisperse w-in-w emulsion droplets with spherical shapes, deal with the small volumes of solutions and short reaction times and achieve portability and versatility in their design through rapid prototyping. Owing to several advantages, microfluidic approaches have recently been introduced. To date, several different strategies have been explored to generate w-in-w emulsions and multiple w-in-w emulsions and to fabricate microparticles and microcapsules using conventional microfluidic devices. Although a few review articles on ATPSs emulsions have been published in the past, to date, few reviews have exclusively focused on the evolution of microfluidic-based ATPS droplets. The present review begins with a brief discussion of the history of ATPSs and their fundamentals, which is followed by an account chronicling the integration of microfluidic devices with ATPSs to generate w-in-w emulsion droplets. Furthermore, the stabilization strategies of w-in-w emulsion droplets and microfluidic fabrication of microparticles and microcapsules for modern applications, such as biomolecule encapsulation and spheroid construction, are discussed in detail in this review. We believe that the present review will provide useful information to not only new entrants in the microfluidic community wanting to appreciate the findings of the field but also existing researchers wanting to keep themselves updated on progress in the field.
Collapse
Affiliation(s)
- Sneha Daradmare
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
14
|
The interfacial behavior and long-term stability of emulsions stabilized by gum arabic and sugar beet pectin. Carbohydr Polym 2022; 291:119623. [DOI: 10.1016/j.carbpol.2022.119623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023]
|
15
|
Ali Mahdi A, Mohammed JK, Al‐Ansi W, Al‐Maqtari QA, Al‐Adeeb A, Cui H, Lin L. Stabilization of the water‐in‐oil emulsions of
Citrus reticulata
essential oil by different combinations of gum arabic/maltodextrin/whey protein. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amer Ali Mahdi
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University Sana'a Yemen
| | | | - Waleed Al‐Ansi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University Sana'a Yemen
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu China
| | - Qais Ali Al‐Maqtari
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University Sana'a Yemen
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu China
| | | | - Haiying Cui
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Lin Lin
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- State Key Laboratory of Utilization of Woody Oil Resource Hunan Academy of Forestry Changsha China
| |
Collapse
|
16
|
Meng Y, Nicol E, Nicolai T. Exploiting multiple phase separation to stabilize water in water emulsions and form stable microcapsules. J Colloid Interface Sci 2022; 617:65-72. [DOI: 10.1016/j.jcis.2022.02.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
|
17
|
Liu J, Han Y, Chen J, Zhang Z, Miao S, Zheng B, Zhang L. MCT/LCT Mixed Oil Phase Enhances the Rheological Property and Freeze-Thawing Stability of Emulsion. Foods 2022; 11:foods11050712. [PMID: 35267345 PMCID: PMC8909414 DOI: 10.3390/foods11050712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022] Open
Abstract
The main objective of this study was to investigate the effect of different oil phase compositions (medium-chain triglyceride (MCT) and long-chain triglyceride (LCT), the proportion of MCT is 0%, 5%, 10%, 15% and 20%, respectively) on the rheological properties and freeze-thaw stability of emulsions. The emulsions were characterized by differential scanning calorimetry (DSC), rheometer, stability analyzer, Malvern particle size meter and confocal microscope. Results showed that all emulsions exhibited a gel-like characteristic with a storage modulus higher than the loss modulus. The elastic modulus and complex viscosity of the emulsions increased with the increase of MCT proportions. During the heating from 4 °C to 80 °C, the complex viscosity of all emulsions decreased first and then remained unchanged at a continuous high temperature, indicating that the emulsions had good stability and internal structural integrity during the cooling and high-temperature processes. With the increase of MCT proportions, the freeze-thaw stability of the emulsions increased first and then decreased, and showed the optimum with 10% MCT. That could be referred for the production of a product with better freeze-thaw stability and rheological property in the food and cosmetic industries.
Collapse
Affiliation(s)
- Jiahao Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.H.); (J.C.); (B.Z.)
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China;
| | - Yi Han
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.H.); (J.C.); (B.Z.)
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China;
| | - Jiashi Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.H.); (J.C.); (B.Z.)
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China;
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen Yinxiang Group Co. Ltd., Xiamen 361100, China;
| | - Song Miao
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China;
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.H.); (J.C.); (B.Z.)
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China;
| | - Longtao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.H.); (J.C.); (B.Z.)
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China;
- Correspondence:
| |
Collapse
|