1
|
Qiao M, Wang Z, Zhang J, Li Y, Chen LA, Zhang F, Dordick JS, Linhardt RJ, Cai C, Huang H, Zhang X. Nanopore-regulated in situ polymerization for synthesis of homogeneous heparan sulfate with low dispersity. Carbohydr Polym 2024; 341:122297. [PMID: 38876729 DOI: 10.1016/j.carbpol.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024]
Abstract
The biological activities of heparan sulfate (HS) are intimately related to their molecular weights, degree and pattern of sulfation and homogeneity. The existing methods for synthesizing homogeneous sugar chains of low dispersity involve multiple steps and require stepwise isolation and purification processes. Here, we designed a mesoporous metal-organic capsule for the encapsulation of glycosyltransferase and obtained a microreactor capable of enzymatically catalyzing polymerization reactions to prepare homogeneous heparosan of low dispersity, the precursor of HS and heparin. Since the sugar chain extension occurs in the pores of the microreactor, low molecular weight heparosan can be synthesized through space-restricted catalysis. Moreover, the glycosylation co-product, uridine diphosphate (UDP), can be chelated with the exposed metal sites of the metal-organic capsule, which inhibits trans-cleavage to reduce the molecular weight dispersity. This microreactor offers the advantages of efficiency, reusability, and obviates the need for stepwise isolation and purification processes. Using the synthesized heparosan, we further successfully prepared homogeneous 6-O-sulfated HS of low dispersity with a molecular weight of approximately 6 kDa and a polydispersity index (PDI) of 1.032. Notably, the HS generated exhibited minimal anticoagulant activity, and its binding affinity to fibroblast growth factor 1 was comparable to that of low molecular weight heparins.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junjie Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yanqi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Shaffer KJ, Smith RAA, Daines AM, Luo X, Lu X, Tan TC, Le BQ, Schwörer R, Hinkley SFR, Tyler PC, Nurcombe V, Cool SM. Rational synthesis of a heparan sulfate saccharide that promotes the activity of BMP2. Carbohydr Polym 2024; 333:121979. [PMID: 38494232 DOI: 10.1016/j.carbpol.2024.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Heparan sulfate (HS) is a glycosaminoglycan (GAG) found throughout nature and is involved in a wide range of functions including modulation of cell signalling via sequestration of growth factors. Current consensus is that the specificity of HS motifs for protein binding are individual for each protein. Given the structural complexity of HS the synthesis of libraries of these compounds to probe this is not trivial. Herein we present the synthesis of an HS decamer, the design of which was undertaken rationally from previously published data for HS binding to the growth factor BMP-2. The biological activity of this HS decamer was assessed in vitro, showing that it had the ability to both bind BMP-2 and increase its thermal stability as well as enhancing the bioactivity of BMP-2 in vitro in C2C12 cells. At the same time no undesired anticoagulant effect was observed. This decamer was then analysed in vivo in a rabbit model where higher bone formation, bone mineral density (BMD) and trabecular thickness were observed over an empty defect or collagen implant alone. This indicated that the HS decamer was effective in promoting bone regeneration in vivo.
Collapse
Affiliation(s)
- Karl J Shaffer
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Raymond A A Smith
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore; School of Chemical Engineering, University of Queensland, Brisbane, Qld 4072, Australia
| | - Alison M Daines
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Xiaoman Luo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Xiaohua Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Tuan Chun Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Bach Q Le
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Ralf Schwörer
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Simon F R Hinkley
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138632, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore; School of Chemical Engineering, University of Queensland, Brisbane, Qld 4072, Australia; Department of Orthopaedic Surgery, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
3
|
Smith RAA, Luo X, Lu X, Tan TC, Le BQ, Zubkova OV, Tyler PC, Nurcombe V, Cool SM. Enhancing BMP-2-mediated osteogenesis with a synthetic heparan sulfate mimetic. BIOMATERIALS ADVANCES 2023; 155:213671. [PMID: 39492001 DOI: 10.1016/j.bioadv.2023.213671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Bone morphogenetic protein 2 (BMP-2) is an osteoinductive protein and a potent inducers of bone formation, playing an essential role during bone fracture repair. Heparan sulfate (HS), a highly charged and linear polysaccharide, is known to interact with and enhance BMP-2 bioactivity. Despite showing potential as a potent adjuvant of the endogenous bone healing response, commercially available HS is derived from animal sources which are less desirable when considering translation into the clinic. In the present study, we screen twenty glycomimetics against BMP-2 to determine if fully synthetic analogues of HS can enhance the bioactivity of BMP-2 in vitro and bone healing in vivo. We found that a four-armed dendrimer harboring oversulfated maltose residues could bind BMP-2 with high affinity, enhance BMP-2 bioactivity in vitro and enhance bone regeneration in vivo. These data suggest fully synthetic glycomimetics are viable alternatives to naturally derived HS and offer an attractive alternative for clinical translation.
Collapse
Affiliation(s)
- Raymond A A Smith
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia.
| | - Xiaoman Luo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Xiaohua Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Tuan Chun Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Bach Q Le
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Olga V Zubkova
- The Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, New Zealand
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, New Zealand
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Orthopaedic Surgery, Yong Yoo Lin School of Medicine, National University of Singapore; School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
4
|
A quantitative mass spectrometry method to differentiate bovine and ovine heparins from pharmaceutical porcine heparin. Carbohydr Polym 2022; 301:120303. [DOI: 10.1016/j.carbpol.2022.120303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
|