1
|
Wang Y, Yan M, Zhang P, Wu X, Huang S, Chen S, Rong Y, Sheng Y, Wang Y, Mao G, Chen L, Wang S, Yang B. Structure elucidation and antiviral activity of a cold water-extracted mannogalactofucan Ts1-1A from Trametes sanguinea against human cytomegalovirus in vitro. Carbohydr Polym 2024; 335:122101. [PMID: 38616079 DOI: 10.1016/j.carbpol.2024.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
In this study, we purified a partially acetylated heteropolysaccharide (Ts1-1A) from the fruit bodies of Trametes sanguinea Lloyd through cold water extraction and serial chromatographic separation. The purified polysaccharide Ts1-1A (12.8 kDa) was characterized as a branched mannogalactofucan with a backbone of alternately connected 1,3-linked α-Fucp and 1,6-linked α-Galp, which was partially substituted by non-reducing end units of β-Manp at O-2 and O-3 positions of 1,6-linked α-Galp. Ts1-1A showed pronounced anti-human cytomegalovirus activity at the concentration of 200 and 500 μg/mL in systematical assessments including morphological changes, western blotting, qPCR, indirect immunofluorescence and tissue culture infective dose assays. Moreover, Ts1-1A exerted its antiviral activity at two distinct stages of viral proliferation manifesting as significantly inhibiting viral protein (IE1/2 and p52) expression and reducing viral gene (UL123, UL44 and UL32) replication in the HCMV-infected WI-38 cells. At viral attachment stage, Ts1-1A interacted with HCMV and prevented HCMV from attaching to its host cells. While at early phase of viral replication stage, Ts1-1A suppressed HCMV replication by downregulating NQO1 and HO-1 proteins related to oxidative stress as an antioxidant. To sum up, Ts1-1A is a promising anti-HCMV agent which could be developed for HCMV infection prevention and therapy.
Collapse
Affiliation(s)
- Yiran Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Mengxia Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Panpan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Xinna Wu
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, PR China
| | - Siyang Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Siru Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yizhou Rong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yangyang Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Libing Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China.
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China.
| |
Collapse
|
2
|
Sheng S, Zhang H, Li X, Chen J, Wang P, Liang Y, Li C, Li H, Pan N, Bao X, Liu M, Zhao L, Li X, Guan P, Wang X. Probiotic-derived amphiphilic exopolysaccharide self-assembling adjuvant delivery platform for enhancing immune responses. J Nanobiotechnology 2024; 22:267. [PMID: 38764014 PMCID: PMC11103965 DOI: 10.1186/s12951-024-02528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Enhancing immune response activation through the synergy of effective antigen delivery and immune enhancement using natural, biodegradable materials with immune-adjuvant capabilities is challenging. Here, we present NAPSL.p that can activate the Toll-like receptor 4 (TLR4) pathway, an amphiphilic exopolysaccharide, as a potential self-assembly adjuvant delivery platform. Its molecular structure and unique properties exhibited remarkable self-assembly, forming a homogeneous nanovaccine with ovalbumin (OVA) as the model antigen. When used as an adjuvant, NAPSL.p significantly increased OVA uptake by dendritic cells. In vivo imaging revealed prolonged pharmacokinetics of NAPSL. p-delivered OVA compared to OVA alone. Notably, NAPSL.p induced elevated levels of specific serum IgG and isotype titers, enhancing rejection of B16-OVA melanoma xenografts in vaccinated mice. Additionally, NAPSL.p formulation improved therapeutic effects, inhibiting tumor growth, and increasing animal survival rates. The nanovaccine elicited CD4+ and CD8+ T cell-based immune responses, demonstrating the potential for melanoma prevention. Furthermore, NAPSL.p-based vaccination showed stronger protective effects against influenza compared to Al (OH)3 adjuvant. Our findings suggest NAPSL.p as a promising, natural self-adjuvanting delivery platform to enhance vaccine design across applications.
Collapse
Affiliation(s)
- Shouxin Sheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Xinyu Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Jian Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
- JinYuBaoLing Biopharmaceutical Co. Ltd, Inner Mongolia, 010000, Hohhot, P.R. China
| | - Pu Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Chunhe Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Na Pan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Mengnan Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Lixia Zhao
- JinYuBaoLing Biopharmaceutical Co. Ltd, Inner Mongolia, 010000, Hohhot, P.R. China
| | - Xiaoyan Li
- JinYuBaoLing Biopharmaceutical Co. Ltd, Inner Mongolia, 010000, Hohhot, P.R. China
| | - Pingyuan Guan
- JinYuBaoLing Biopharmaceutical Co. Ltd, Inner Mongolia, 010000, Hohhot, P.R. China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, 010021, P.R. China.
| |
Collapse
|
3
|
Akhtar N, Wani AK, Sharma NR, Sanami S, Kaleem S, Machfud M, Purbiati T, Sugiono S, Djumali D, Retnaning Prahardini PE, Purwati RD, Supriadi K, Rahayu F. Microbial exopolysaccharides: Unveiling the pharmacological aspects for therapeutic advancements. Carbohydr Res 2024; 539:109118. [PMID: 38643705 DOI: 10.1016/j.carres.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Samira Sanami
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Kaleem
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Moch Machfud
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Titiek Purbiati
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Sugiono Sugiono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Djumali Djumali
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | | | - Rully Dyah Purwati
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Khojin Supriadi
- Research Center for Food Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, (16911), Indonesia
| |
Collapse
|
4
|
Han J, Xia W, Wang D, Wang Y, Liu Z, Wu Z. Characterization of an exopolysaccharide synthesized by Lacticaseibacillus rhamnosus B6 and its immunomodulatory activity in vitro. Int J Biol Macromol 2024; 264:130576. [PMID: 38442828 DOI: 10.1016/j.ijbiomac.2024.130576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
An exopolysaccharide, designated F1, was purified from the fermented milk by Lacticaseibacillus rhamnosus strain B6 (CGMCC No. 13310). F1, with the weight average molecular weight of 1.577 × 106 Da, is consisted of rhamnose, glucose and galactose in a molar ratio of 3.7:1.5: 1. The backbone included 1,3-linked Rha, 1,2,3-linked Rha, 1,2-linked Glc and 1,3-linked Glc residues, with the branching point located at O2 position of 1,2,3-linked Rha residue, and the branch chain composed of terminal linked galactose residue with a pyruvate substituent. F1 could significantly stimulate the phagocytic activity and TNF-α expression in RAW 264.7 macrophages in a dose-dependent manner, and the release of NO at 200 μg/mL as well. F1 at 200 μg/mL could stimulate the expression of the pro-inflammatory cytokine encoding genes including TNF-α and iNOS, but with a negligible upregulating effect on the mRNA expression of IL-10. F1 could up-regulate the expression of NF-κBp65 and skew macrophage polarization towards M1 phenotype. These results suggest F1 elicit an immunomodulatory effect through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Wei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Danqi Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Yitian Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China.
| |
Collapse
|
5
|
Feng S, Xu X, Li X, Deng G, Xia C, Zhou L, Chen T, Gao T, Yuan M, Cao X, Ding C. Structure elucidation and antioxidant activity of a polysaccharide from Penthorum chinense Pursh. Int J Biol Macromol 2024; 264:130720. [PMID: 38460626 DOI: 10.1016/j.ijbiomac.2024.130720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Penthorum chinense Pursh is a traditional Miao medicine, mainly used in the treatment of liver diseases. In this study, an acidic heteropolysaccharide PCPP was isolated from P. chinense with an average molecular weight of 14.96 kDa. PCPP contained arabinogalactan and homogalacturonan segments, which is formed by 4-Galp-(1 → 5)-Araf-1 and 3,6-Galp-(1 → 6)-Galp-1,3 glycosidic linkage. A variety of side chains, including t-Glcp-(1 → 4)-Glcp-(1 → 4)-GlcpA-1, t-Xylp-(1→, and 2-Manp-(1 → 4)-GalpA-1,3 linked to the O-3 and O-6 of 3,6-Galp. The antioxidant activity measurement in three models demonstrated that PCPP exhibited ROS scavenging capacity, antioxidant ability in the cellular model, enhancement of oxidative stress resistance, and healthspan-promoting effect in the worm model. These results provided the theoretical fundament of PCPP as a potential natural antioxidant.
Collapse
Affiliation(s)
- Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Xiaoyan Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Xiao Li
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Guanfeng Deng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan Province, China.
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Tao Gao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Xiaohan Cao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China.
| |
Collapse
|
6
|
Wang Y, Han J, Ren Q, Liu Z, Zhang X, Wu Z. The Involvement of Lactic Acid Bacteria and Their Exopolysaccharides in the Biosorption and Detoxication of Heavy Metals in the Gut. Biol Trace Elem Res 2024; 202:671-684. [PMID: 37165259 DOI: 10.1007/s12011-023-03693-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Heavy metal pollution has become one of the most important global environmental issues. The human health risk posed by heavy metals encountered through the food chain and occupational and environmental exposure is increasing, resulting in a series of serious diseases. Ingested heavy metals might disturb the function of the gut barrier and cause toxicity to organs or tissues in other sites of the body. Probiotics, including some lactic acid bacteria (LAB), can be used as an alternative strategy to detoxify heavy metals in the host body due to their safety and effectiveness. Exopolysaccharides (EPS) produced by LAB possess varied chemical structures and functional properties and take part in the adsorption of heavy metals via keeping the producing cells vigorous. The main objective of this paper was to summarize the roles of LAB and their EPS in the adsorption and detoxification of heavy metals in the gut. Accumulated evidence has demonstrated that microbial EPS play a pivotal role in heavy metal biosorption. Specifically, EPS-producing LAB have been reported to show superior absorption, tolerance, and efficient abatement of the toxicity of heavy metals in vitro and/or in vivo to non-EPS-producing species. The mechanisms underlying EPS-metal binding are mainly related to the negatively charged acidic groups and unique steric structure on the surface of EPS. However, whether the enriched heavy metals on the bacterial cell surface increase toxicity to local mammal cells or tissues in the intestine and whether they are released during excretion remain to be elucidated.
Collapse
Affiliation(s)
- Yitian Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Quanlu Ren
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China.
| |
Collapse
|
7
|
Xiong J, Liu DM, Huang YY. Exopolysaccharides from Lactiplantibacillus plantarum: isolation, purification, structure–function relationship, and application. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Xia W, Han J, Zhu S, Wang Y, Zhang W, Wu Z. Structural elucidation of the exopolysaccharide from Streptococcus thermophilus XJ53 and the effect of its molecular weight on immune activity. Int J Biol Macromol 2023; 230:123177. [PMID: 36623615 DOI: 10.1016/j.ijbiomac.2023.123177] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
EPS53, a homogeneous exopolysaccharide (EPS) was isolated from Streptococcus thermophiles XJ53 fermented in skimmed milk via anion exchange column chromatography. The relative molecular weight of EPS53 was above 6.7 × 105 g/mol; its repeating structural unit of EPS53 consisted of β-T-Galp, β-1,3-Galf, α-1,3-Glcp and β-1,3,6-Glcp residues in a molar ratio of 1:1:1:1, with β-T-Galp attached to the O-6 position of β-1,3,6-Glcp,identical to the EPS produced from S. thermophilus SFi39. EPS53-D, purified under similar conditions as EPS53 except for the deproteinization of trichloroacetic acid (TCA), had a lower molecular weight but the same repeating structural unit. The effects of EPS53 and EPS53-D on proliferation, phagocytosis and nitric oxide (NO) release of macrophage RAW264.7 were compared. EPS53 exhibited stronger immune activity than EPS53-D, suggesting that the molecular weight might have an important effect on the activity of EPS molecules. Treatment with TCA might affect the activities of native EPSs produced by fermentation.
Collapse
Affiliation(s)
- Wei Xia
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China; Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Shiming Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yilin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenqing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China.
| |
Collapse
|
9
|
Huang H, Yang X, Li W, Han Q, Xu Z, Xia W, Wu M, Zhang W. Structural characterization and immunomodulatory activity of an arabinogalactan from Jasminum sambac (L.) Aiton tea processing waste. Int J Biol Macromol 2023; 235:123816. [PMID: 36841385 DOI: 10.1016/j.ijbiomac.2023.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
An arabinogalactan named JSP-1a was isolated from Jasmine tea processing waste by DEAE Sepharose FF and Sephacryl S-200 HR chromatography. Polysaccharide JSP-1a, with an average molecular weight of 87.5 kDa, was composed of galactose (59.60 %), arabinose (33.89 %), mannose (4.81 %), and rhamnose (1.70 %). JSP-1a was found to be a type II arabinogalactan comprising the main backbone of 1, 6-linked Galp residues, and the side chain containing α-T-Araf, α-1,5-Araf, β-T-Galp, β-1,3-Galp, and β-1,4-Manp residues was attached to the O-3 position of β-1,3,6-Galp residues. Evidence from bioactivity assays indicated that JSP-1a possessed potent immunomodulatory effects on RAW264.7 macrophages: treatment with JSP-1a increased phagocytosis, activated NF-κB p65 translocation, and promoted the production of NO, reactive oxygen species (ROS), the tumor necrosis factor (TNF)-α, and interleukin (IL)-6. Furthermore, inhibition of Toll-like receptor 4 caused the suppression of NO release and cytokines secretion, which indicated that TLR-4/NF-κB pathway might play a significant role in JSP-1a-induced macrophages' immune response. The results of this study could provide a theoretical basis of JSP-1a as a safe immunostimulatory functional foods or a treatment for immunological diseases.
Collapse
Affiliation(s)
- Hai Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Qifeng Han
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhizhen Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Mengqi Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Wenqing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
10
|
Meng D, Wang H, Song B, Zhang H, Fu R, Wang S, Li J, Zhang J. Characterization and bioactivity analysis of a heteropolysaccharide purified from Paenibacillus edaphicus strain UJ1. Int J Biol Macromol 2022; 223:57-66. [PMID: 36347363 DOI: 10.1016/j.ijbiomac.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Many polysaccharides produced by Paenibacillus spp. have attractive properties, such as rheological modification and immunomodulation. However, properties of P. edaphicus polysaccharides are not understood sufficiently. Here, the polysaccharide (PUM) was obtained from P. edaphicus strain UJ1 by batch fermentation, and the chemical characteristics, rheological and anti-inflammatory properties of PUM and its sulfate derivative (PUM-S) were investigated. The results indicated that PUM was a typical shear-thinning biopolymer with an estimated weight average molecular weight of 2.45 × 107 Da. PUM molecule consisted of D-Man, D-GlcA, D-Glc, D-Gal, and L-Fuc with the molar ratio of 3.00:1.07:3.21:0.81:0.76. It had the backbone → 3)-β-D-Man-(1 → 3)-β-D-Glc-(1 → 3)-β-D-Man-(1 → 3)β-D-Glc-(1 → 4)-β-D-GlcA-(1 → 3)-β-D-Man-(1 → and two side chains, namely, pyruvoyl-Glc-(1→ and β-L-Fuc-(1 → 3)-β-D-Gal-(1→. Moreover, PUM-S was prepared by SO3-pyridine method and had the weight average molecular weight of 1.42 × 105 Da. The bioactivity of PUM and PUM-S was analyzed in vitro in RAW 264.7 cells. The results indicated that both PUM and PUM-S facilitated cell proliferation at 50-500 μg/mL. Besides, PUM-S showed potential anti-inflammatory effect in the LPS-induced cells. According to transcription and molecular dynamics analyses, PUM-S expressed its activity probably by interacting with the Toll-like receptor 4. In general, P. edaphicus produced a polysaccharide with new chemical structure and promising rheological and bioactive properties.
Collapse
Affiliation(s)
- Deyao Meng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Hongyang Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Baocai Song
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Huijuan Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Renjie Fu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| |
Collapse
|
11
|
Wang T, Han J, Dai H, Sun J, Ren J, Wang W, Qiao S, Liu C, Sun L, Liu S, Li D, Wei S, Liu H. Polysaccharides from Lyophyllum decastes reduce obesity by altering gut microbiota and increasing energy expenditure. Carbohydr Polym 2022; 295:119862. [DOI: 10.1016/j.carbpol.2022.119862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022]
|
12
|
The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration. Carbohydr Polym 2022; 291:119550. [DOI: 10.1016/j.carbpol.2022.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
|
13
|
Liao Y, Gao M, Wang Y, Liu X, Zhong C, Jia S. Structural characterization and immunomodulatory activity of exopolysaccharide from Aureobasidium pullulans CGMCC 23063. Carbohydr Polym 2022; 288:119366. [DOI: 10.1016/j.carbpol.2022.119366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
|