1
|
Dhiman S, Kaur P, Narang J, Mukherjee G, Thakur B, Kaur S, Tripathi M. Fungal bioprocessing for circular bioeconomy: Exploring lignocellulosic waste valorization. Mycology 2024; 15:538-563. [PMID: 39678640 PMCID: PMC11636145 DOI: 10.1080/21501203.2024.2316824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 12/17/2024] Open
Abstract
The rising global demand for sustainable and eco-friendly practices has led to a burgeoning interest in circular bioeconomy, wherein waste materials are repurposed into valuable resources. Lignocellulosic waste, abundant in agricultural residues and forestry by-products, represents a significant untapped resource. This article explores the potential of fungal-mediated processes for the valorisation of lignocellulosic waste, highlighting their role in transforming these recalcitrant materials into bio-based products. The articles delve into the diverse enzymatic and metabolic capabilities of fungi, which enable them to efficiently degrade and metabolise lignocellulosic materials. The paper further highlights key fungal species and their mechanisms involved in the breakdown of complex biomass, emphasising the importance of understanding their intricate biochemical pathways for optimising waste conversion processes. The key insights of the article will significantly contribute to advancing the understanding of fungal biotechnology for circular bioeconomy applications, fostering a paradigm shift towards a more resource-efficient and environmentally friendly approach to waste management and bio-based product manufacturing.
Collapse
Affiliation(s)
- Sunny Dhiman
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Pardeep Kaur
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Jasjeet Narang
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Gunjan Mukherjee
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Babita Thakur
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Sukhminderjit Kaur
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| |
Collapse
|
2
|
Liang G, Zong Y, Zou Y, Pang X, Zeng W, Zhu J, Yang S, Zhu Y. Sulfonated cellulose nanocrystal modified with ammonium salt as reinforcement in poly(lactic acid) composite films. Int J Biol Macromol 2024; 261:129673. [PMID: 38281528 DOI: 10.1016/j.ijbiomac.2024.129673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/26/2023] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
Poly(lactic acid) (PLA) composites reinforced with cellulose nanocrystals (CNCs) are promising biodegradable materials. However, the poor compatibility and dispersion of CNCs in the PLA matrix remain a significant obstacle to improving the properties of composites. In this study, the modified CNC (CNC-D) was prepared through sulfonation treatment, followed by modification with didecyl dimethyl ammonium chloride (DDAC). Then, CNC-D was mixed with PLA to prepare composite films (PLA-CNC-D). The results revealed that the PLA-CNC-D had higher tensile strength and elongation at break than PLA-CNC at 3 wt% nanofiller content, increasing by 41.53 and 22.18 %, respectively. SEM and DSC analysis indicated that surface modification improved the compatibility and dispersion of CNC-D in the PLA matrix. The sulfonation process increased the anion content on the surface of CNC-D, enabling the CNC-D surface to adsorb more cationic DDAC, consequently sharply reducing the hydrophilicity of CNC-D. Moreover, the PLA-CNC-D exhibited excellent antibacterial activity against S. aureus and E. coli. In summary, this study provides a novel CNC modification approach to enhance the physical properties and antibacterial activity of PLA composite films, enlarging the application of degradable PLA composites.
Collapse
Affiliation(s)
- Ganbo Liang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yijun Zong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuyan Zou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangchao Pang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wei Zeng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianfei Zhu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Suwen Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuan Zhu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
3
|
Fan S, Gao X, Pang J, Liu G, Li X. Enhanced Preservative Performance of Pine Wood through Nano-Xylan Treatment Assisted by High-Temperature Steam and Vacuum Impregnation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113976. [PMID: 37297110 DOI: 10.3390/ma16113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023]
Abstract
This study used environmentally friendly nano-xylan to enhance the drug loading and preservative performance (especially against white-rot fungi) of pine wood (Pinus massoniana Lamb), determine the best pretreatment, nano-xylan modification process, and analyze the antibacterial mechanism of nano-xylan. High-temperature, high-pressure steam pretreatment-assisted vacuum impregnation was applied to enhance the nano-xylan loading. The nano-xylan loading generally increased upon increasing the steam pressure and temperature, heat-treatment time, vacuum degree, and vacuum time. The optimal loading of 14.83% was achieved at a steam pressure and temperature of 0.8 MPa and 170 °C, heat treatment time of 50 min, vacuum degree of 0.08 MPa, and vacuum impregnation time of 50 min. Modification with nano-xylan prohibited the formation of hyphae clusters inside the wood cells. The degradation of integrity and mechanical performance were improved. Compared with the untreated sample, the mass loss rate of the sample treated with 10% nano-xylan decreased from 38 to 22%. The treatment with high-temperature, high-pressure steam significantly enhanced the crystallinity of wood.
Collapse
Affiliation(s)
- Shutong Fan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xun Gao
- College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325006, China
| | - Jiuyin Pang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
| | - Guanlin Liu
- State Grid Longjing Power Supply Company, Longjing 133400, China
| | - Xianjun Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
4
|
Chen H, Zhang L, Huang Z, Wu Z, Tan M, Zhang X, Jiang L, Qin X, Huang J, Li H. Effect of Anoxic Atmosphere on the Physicochemical and Pelletization Properties of Pinus massoniana Sawdust during Storage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:791. [PMID: 36613112 PMCID: PMC9819789 DOI: 10.3390/ijerph20010791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The 34-day anoxic storage of Pinus massoniana sawdust (PS) in a sealed constant temperature and humidity chambers was carried out to simulate the limited-oxygen storage process inside piles at industrial scale. The effects of anoxic storage on feedstock's properties and pelletization process were investigated with respect to elemental composition, dry matter loss, thermogravimetric characteristics, energy consumption, pellets' density, and microbial communities, etc. After anoxic storage, the microbial community of PS samples was altered, such as the fungi content (Clonostachys, Strelitziana, and Orbilia, etc.), resulting the elemental composition of PS was altered. Thus, the cellulose and ash content of the stored PS were increased, while the hemicellulose, volatile, and fixed carbon were decreased. The energy consumption was increased 7.85-21.98% with the increase in anoxic storage temperature and with the additive of fresh soil collected from PS field in storage process. The single pellet density was altered slightly. Meanwhile, the moisture uptake of PS pellets was decreased. After anoxic storage, the combustion behavior of the stored PS became more stable. The results can be applied directly to guide the development of commercial PS storage and pelletization process currently under development in Asia, Europe and North America.
Collapse
Affiliation(s)
- Hongli Chen
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Liqiang Zhang
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Zijian Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Mengjiao Tan
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaoli Qin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| |
Collapse
|
5
|
Wu Z, Peng K, Zhang Y, Wang M, Yong C, Chen L, Qu P, Huang H, Sun E, Pan M. Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Mater Today Bio 2022; 16:100445. [PMID: 36212906 PMCID: PMC9535326 DOI: 10.1016/j.mtbio.2022.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Lignocellulose utilization has been gaining great attention worldwide due to its abundance, accessibility, renewability and recyclability. Destruction and dissociation of the cross-linked, hierarchical structure within cellulose hemicellulose and lignin is the key procedure during chemical utilization of lignocellulose. Of the pretreatments, biological treatment, which can effectively target the complex structures, is attractive due to its mild reaction conditions and environmentally friendly characteristics. Herein, we report a comprehensive review of the current biological pretreatments for lignocellulose dissociation and their corresponding degradation mechanisms. Firstly, we analyze the layered, hierarchical structure of cell wall, and the cross-linked network between cellulose, hemicellulose and lignin, then highlight that the cracking of β-aryl ether is considered the key to lignin degradation because of its dominant position. Secondly, we explore the effect of biological pretreatments, such as fungi, bacteria, microbial consortium, and enzymes, on substrate structure and degradation efficiency. Additionally, combining biological pretreatment with other methods (chemical methods and catalytic materials) may reduce the time necessary for the whole process, which also help to strengthen the lignocellulose dissociation efficiency. Thirdly, we summarize the related applications of lignocellulose, such as fuel production, chemicals platform, and bio-pulping, which could effectively alleviate the energy pressure through bioconversion into high value-added products. Based on reviewing of current progress of lignocellulose pretreatment, the challenges and future prospects are emphasized. Genetic engineering and other technologies to modify strains or enzymes for improved biotransformation efficiency will be the focus of future research.
Collapse
Affiliation(s)
- Zengyou Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kun Peng
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yin Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mei Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Cheng Yong
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ling Chen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ping Qu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hongying Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Enhui Sun
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
- College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
- Corresponding author. Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Mingzhu Pan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Corresponding author.
| |
Collapse
|
6
|
Hashemi S, Solli L, Aasen R, Lamb JJ, Horn SJ, Lien KM. Stimulating biogas production from steam-exploded birch wood using Fenton reaction and fungal pretreatment. BIORESOURCE TECHNOLOGY 2022; 366:128190. [PMID: 36326549 DOI: 10.1016/j.biortech.2022.128190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Delignification of steam-exploded birch wood (SEBW) was stimulated using a pretreatment method including Fenton reaction (FR) and fungi. SEBW was employed as a substrate to optimize the Fe(III) and Fe(II) dosage in FR. Maximum iron-binding to SEBW was obtained at pH 3.5. FR pretreatment increased biological methane yields from 257 mL/g vS in control to 383 and 352 mL/ g vS in samples with 0.5 mM Fe(II) and 1.0 mM Fe(III), respectively. Further enzymatic pretreatment using a commercial cellulase cocktail clearly improved methane production rate but only increased the final methane yields by 2-9 %. Finally, pretreatments with the fungi Pleurotus ostreatus (PO) and Lentinula edodes (LE), alone or in combination with FR, were carried out. SEBW pretreated with only LE and samples pretreated with PO and1 mM Fe(III) + H2O2 increased the methane production yield to 420 and 419 mL/g vS respectively. These pretreatments delignified SEBW up to 25 %.
Collapse
Affiliation(s)
- Seyedbehnam Hashemi
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Kolbjørn Hejes vei 1B, 7034 Trondheim, Norway.
| | - Linn Solli
- NIBIO, Norwegian Institute of Bioeconomy Research, Frederik A. Dahls vei 20, 1432 Ås, Norway
| | - Roald Aasen
- NIBIO, Norwegian Institute of Bioeconomy Research, Frederik A. Dahls vei 20, 1432 Ås, Norway
| | - Jacob J Lamb
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Kolbjørn Hejes vei 1B, 7034 Trondheim, Norway
| | - Svein Jarle Horn
- NIBIO, Norwegian Institute of Bioeconomy Research, Frederik A. Dahls vei 20, 1432 Ås, Norway; Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Kristian M Lien
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Kolbjørn Hejes vei 1B, 7034 Trondheim, Norway
| |
Collapse
|
7
|
Sun Z, Mao Y, Liu S, Zhang H, Xu Y, Geng R, Lu J, Huang S, Yuan Q, Zhang S, Dong Q. Effect of pretreatment with Phanerochaete chrysosporium on physicochemical properties and pyrolysis behaviors of corn stover. BIORESOURCE TECHNOLOGY 2022; 361:127687. [PMID: 35878774 DOI: 10.1016/j.biortech.2022.127687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Fungal pretreatment can selectively degrade partial biomass components, which undoubtedly exerts a significant influence on biomass pyrolysis behavior. The corn stover was pretreated with Phanerochaete chrysosporium, and its influence on the physicochemical properties and pyrolysis behaviors of biomass together with the product characteristics were investigated. The Phanerochaete chrysosporium was more active to degrade hemicellulose and lignin. The hemicellulose and lignin contents in corn stover were decreased by 35.14 % and 31.80 %, respectively, after five weeks pretreatment, compared to the untreated sample. The reaction activation energy decreased from 52.89 kJ·mol-1 for the untreated sample to 40.88 kJ·mol-1 for the sample pretreated for five weeks. The Phanerochaete chrysosporium pretreatment was beneficial to the biochar production but exerted an unfavorable effect on the texture structure. The Phanerochaete chrysosporium also had an obvious influence on the bio-oil compositions. This study can provide a scientific reference for the application of biological pretreatment for biomass pyrolysis technology.
Collapse
Affiliation(s)
- Zhenjie Sun
- School of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yanyong Mao
- School of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Shanjian Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hanwen Zhang
- School of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yue Xu
- School of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Ruipeng Geng
- School of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jingqi Lu
- School of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Siyuan Huang
- School of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiang Yuan
- School of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Shuping Zhang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qing Dong
- School of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
8
|
Nanostructural Changes Correlated to Decay Resistance of Chemically Modified Wood Fibers. FIBERS 2022. [DOI: 10.3390/fib10050040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive chemical modifications have been shown to impart decay resistance to wood. These modifications change hydroxyl availability, water uptake, surface energy, and the nanostructure of wood. Because fungal action occurs on the micro and nano scale, further investigation into the nanostructure may lead to better strategies to prevent fungal decay. The aim of this article is to introduce our findings using small angle neutron scattering (SANS) to probe the effects of chemical modifications on the nanostructure of wood fibers. Southern pine wood fiber samples were chemically modified to various weight percentage gains (WPG) using propylene oxide (PO), butylene oxide (BO), or acetic anhydride (AA). After modification, the samples were water leached for two weeks to remove any unreacted reagents, homopolymers or by-products and then the equilibrium moisture content (EMC) was determined. Laboratory soil-block-decay evaluations against the brown rot fungus Gloeophyllum trabeum were performed to determine weight loss and decay resistance of the modifications. To assist in understanding the mechanism behind fungal decay resistance, SANS was used to study samples that were fully immersed in deuterium oxide (D2O). These measurements revealed that modifying the fibers led to differences in the swollen wood nanostructure compared to unmodified wood fibers. Moreover, the modifications led to differences in the nanoscale features observed in samples that were exposed to brown rot fungal attack compared to unmodified wood fibers and solid wood blocks modified with alkylene oxides.
Collapse
|