1
|
Jia H, Li Y, Zheng Y, Wang H, Zhao F, Yang X, Zhao Q, Jiang Y, Man C. Recent advances in fucoidan-based improved delivery systems: Structure, carrier types and biomedical applications. Carbohydr Polym 2025; 352:123183. [PMID: 39843086 DOI: 10.1016/j.carbpol.2024.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025]
Abstract
Consumer demand for nutritional supplements has fueled the rapid growth of the functional food market. However, ensuring the stability of functional factors in harsh environments remains a major challenge. The development of encapsulation systems is regarded as an effective method for enhancing the stability of functional factors, encapsulation carriers can offer protection for these functional factors. However, the selection of materials remains a significant constraint in the construction of delivery systems. Therefore, developing new encapsulation materials is crucial for advancing delivery systems, preserving the stability of functional factors, and ensuring public health. Fucoidan, a sulfated marine polysaccharide, has garnered significant attention in the field of encapsulation due to its notable advantages, including its remarkable bioactivity, biocompatibility, and targeted binding properties. Fucoidan-improved delivery systems provide new strategies for encapsulation of functional factors. This review first describes the structure of fucoidan, its modification and lists the applications of modified fucoidan, and assesses its feasibility for enhancing delivery systems. Second, it summarizes several common encapsulation technologies and methods, and outlines various carrier types based on fucoidan. Finally, it elucidates recent advances in the biomedical applications of fucoidan-improved delivery systems. Notably, it also presents the challenges and future prospects of this promising field.
Collapse
Affiliation(s)
- Haifu Jia
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuanyuan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huabing Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China.
| |
Collapse
|
2
|
Oliyaei N, Altemimi AB, Abedi E, Hashemi SMB. An overview of fucoidan electrospun nanofibers: Fabrication, modification, characterizations and applications. Food Chem 2025; 467:142318. [PMID: 39642423 DOI: 10.1016/j.foodchem.2024.142318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 11/30/2024] [Indexed: 12/08/2024]
Abstract
Nanofibers provide tunable attributes which make them promising for various applications. The electrospinning technique provides nanofibers with a large surface area and eases functionalization for various food and pharmaceutical applications. Numerous biopolymers have been employed to produce nanofibers due to their biocompatibility, biodegradability, and absorbability. Among different biopolymers, algal polysaccharides have gained much attention. Fucoidan is a sulfated polysaccharide isolated from brown macroalgae with a broad range of biological properties; therefore, it is highly investigated as a functional and therapeutic agent in foods and pharmaceuticals. Thus, different chemical modifications, such as depolymerization, oversulfation, phosphorylation, amination, acetylation, and benzoylation, or conjugation and functionalization with other polymers, have been used to make them desirable for target applications. The present study comprehensively reviews the electrospinning technique, applications, and crosslinking methods, then highlights the fucoidan attributes, fabrication of fucoidan-based electrospun nanofibers, their properties and functionality for food and biomedical applications.
Collapse
Affiliation(s)
- Najmeh Oliyaei
- Department of Food Science and Technology, and Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Ammar B Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah, Iraq
| | - Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | |
Collapse
|
3
|
El Asri S, Ben Mrid R, Zouaoui Z, Roussi Z, Ennoury A, Nhiri M, Chibi F. Advances in structural modification of fucoidans, ulvans, and carrageenans to improve their biological functions for potential therapeutic application. Carbohydr Res 2025; 549:109358. [PMID: 39718272 DOI: 10.1016/j.carres.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Marine sulfated polysaccharides constitute a class of bioactive polymers commonly found in cell walls of macroalgae. Among these macromolecular substances, fucoidans, ulvans, and carrageenans have attracted considerable attention providing interesting therapeutic properties affected by a combination of various structural factors, such as sulfation pattern, molecular weight, monosaccharide composition, and glycosidic linkages. Remarkably, chemical modification, enzymatic hydrolysis and crosslinking are promising approaches for developing the application of these polysaccharides through enhancement and/or addition of new biological properties. This paper reviews the recent advances on these structure modification methods on fucoidans, ulvans, and carrageenans. The physical, chemical and biological properties influenced by the addition of functional groups are also discussed. In addition, an overview of specific enzymes selectively producing oligosaccharides with improved bioactivities as well as ionic and covalent cross-linking strategies are provided. These targeted methods have the potential to develop novel compounds with outstanding biodegradability and biocompatibility, along with low toxicity suitable for diverse applications in biomedical fields, including drug delivery.
Collapse
Affiliation(s)
- Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco; Institute of Biological Sciences (ISSB-P), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P) , Ben-Guerir, 43150, Morocco.
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Fatiha Chibi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| |
Collapse
|
4
|
Dubashynskaya NV, Petrova VA, Ustyukhina IS, Sgibnev AV, Cherkasova YI, Nashchekina YA, Vlasova EN, Romanov DP, Skorik YA. Mucoadhesive polyelectrolyte complexes of fucoidan and chitin nanowhiskers to prolong the antiprotozoal activity of metronidazole. Carbohydr Polym 2025; 349:122975. [PMID: 39643420 DOI: 10.1016/j.carbpol.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/23/2024] [Accepted: 11/09/2024] [Indexed: 12/09/2024]
Abstract
The improvement of the specific pharmacological activity of agents with antimicrobial and antiprotozoal properties (e.g. metronidazole, MET) is of interest for clinical applications in the treatment of bacterial infections. In this work, we prepared the polyelectrolyte complexes (PEC) based on chitin nanowhiskers (CNW) and fucoidan (FUC) with hydrodynamic diameters of 244 and 816 nm, a ζ-potential of about -22 mV and good mucoadhesive properties. The incorporation of MET into PEC particles promoted the sustained release of MET for 10 h and maintained the antiprotozoal activity against clinical isolates of Trichomonas vaginalis for up to 10 h. At concentrations of 1-3 mg/mL, the CWN-FUC-MET particles showed no cytotoxicity (HeLa cell line). The sustained drug release rate, combined with pronounced mucoadhesive properties, improved pharmacological activity, and non-cytotoxicity makes the developed biopolymer delivery systems promising candidates for further clinical trials.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Valentina A Petrova
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Irina S Ustyukhina
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Andrey V Sgibnev
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Pionerskaya st. 11, Orenburg 460000, Russia
| | - Yuliya I Cherkasova
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Pionerskaya st. 11, Orenburg 460000, Russia
| | - Yuliya A Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, St. Petersburg 194064, Russia
| | - Elena N Vlasova
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Dmitry P Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, St. Petersburg 199034, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia.
| |
Collapse
|
5
|
Reyes-Weiss DS, Bligh M, Rhein-Knudsen N, Hehemann JH, Liebeke M, Westereng B, Horn SJ. Application of MALDI-MS for characterization of fucoidan hydrolysates and screening of endo-fucoidanase activity. Carbohydr Polym 2024; 340:122317. [PMID: 38858030 DOI: 10.1016/j.carbpol.2024.122317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Brown macroalgae synthesize large amounts of fucoidans, sulfated fucose-containing polysaccharides, in the ocean. Fucoidans are of importance for their recently discovered contribution to marine carbon dioxide sequestration and due to their potential applications in biotechnology and biomedicine. However, fucoidans have high intra- and intermolecular diversity that challenges assignment of structure to biological function and the development of applications. Fucoidan-active enzymes may be used to simplify this diversity by producing defined oligosaccharides more applicable for structural refinement, characterization, and structure to function assignment for example via bioassays. In this study, we combined MALDI mass spectrometry with biocatalysis to show that the endo-fucoidanases P5AFcnA and Wv323 can produce defined oligosaccharide structures directly from unrefined macroalgal biomass. P5AFcnA released oligosaccharides from seven commercial fucoidan extracts in addition to unrefined biomass of three macroalgae species indicating a broadly applicable approach reproducible across 10 species. Both MALDI-TOF/TOF and AP-MALDI-Orbitrap systems were used, demonstrating that the approach is not instrument-specific and exploiting their combined high-throughput and high-resolution capabilities. Overall, the combination of MALDI-MS and endo-fucoidanase assays offers high-throughput evaluation of fucoidan samples and also enables extraction of defined oligosaccharides of known structure from unrefined seaweed biomass.
Collapse
Affiliation(s)
- Diego S Reyes-Weiss
- Department of Chemistry, Biotechnology, and Life Science, Norwegian University of Life Sciences (NMBU), Christian Magnus Falsens vei 18, 1433 Ås, Norway
| | - Margot Bligh
- University of Bremen, MARUM Centre for Marine Environmental Sciences, Leobener Str. 8, D-28359 Bremen, Germany; Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Nanna Rhein-Knudsen
- Department of Chemistry, Biotechnology, and Life Science, Norwegian University of Life Sciences (NMBU), Christian Magnus Falsens vei 18, 1433 Ås, Norway
| | - Jan-Hendrik Hehemann
- University of Bremen, MARUM Centre for Marine Environmental Sciences, Leobener Str. 8, D-28359 Bremen, Germany; Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany; University of Kiel, Institute for Human Nutrition and Food Science, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Bjørge Westereng
- Department of Chemistry, Biotechnology, and Life Science, Norwegian University of Life Sciences (NMBU), Christian Magnus Falsens vei 18, 1433 Ås, Norway
| | - Svein Jarle Horn
- Department of Chemistry, Biotechnology, and Life Science, Norwegian University of Life Sciences (NMBU), Christian Magnus Falsens vei 18, 1433 Ås, Norway.
| |
Collapse
|
6
|
Shaz N, Maran S, Genasan K, Choudhary R, Alias R, Swamiappan S, Kamarul T, Raghavendran HRB. Functionalization of poly (lactic-co-glycolic acid) nano‑calcium sulphate and fucoidan 3D scaffold using human bone marrow mesenchymal stromal cells for bone tissue engineering application. Int J Biol Macromol 2024; 256:128059. [PMID: 37989428 DOI: 10.1016/j.ijbiomac.2023.128059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
This study aimed to functionalize a novel porous PLGA (Poly lactic-co-glycolic acid) composite scaffold in combination with nano‑calcium sulphate (nCS) and/or fucoidan (FU) to induce osteogenic differentiation of human bone marrow stromal cells. The composite scaffolds (PLGA-nCS-FU, PLGA-nCS or PLGA-FU) were fabricated and subjected to characterization using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Energy Dispersive X-Ray (EDX). The biocompatibility and osteogenic induction potential of scaffolds on seeded human bone marrow derived mesenchymal stromal cells (hBMSCs) were studied using cell attachment and alamar blue cell viability and alkaline phosphatase (ALP), osteocalcin and osteogenic gene expression, respectively. The composition of different groups was reflected in FTIR, XRD and EDX. The SEM micrographs revealed a difference in the surface of the scaffold before and after FU addition. The confocal imaging and SEM micrographs confirmed the attachment of cells onto all three composite scaffolds. However, the AB assay indicated a significant increase (p < 0.05) in cell viability/proliferation seeded on PLGA-nCS-FU on day 21 and 28 as compared with other combinations. A 2-fold significant increase (p < 0.05) in ALP and OC secretion of seeded hBMSCs onto PLGA-nCS-FU was observed when compared with other combinations. A significant increase in RUNX2, OPN, COL-I and ALP genes were observed in the cells seeded on PLGA-nCS-FU on day 14 and 28 as compared with day 0. In conclusion, the incorporation of both Fucoidan and Nano‑calcium sulphate with PLGA showed a promising improvement in the osteogenic potential of hBMSCs. Therefore, PLGA-nCS-FU could be the ideal candidate for subsequent pre-clinical studies to develop a successful bone substitute to repair critical bone defects.
Collapse
Affiliation(s)
- Norshazliza Shaz
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sathiya Maran
- School of Pharmacy, Monash University Malaysia. 16150 Sunway, Malaysia
| | - Krishnamurithy Genasan
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Rodianah Alias
- Department of Manufacturing Technology, Faculty of Innovative Design & Technology, University Sultan Zainal Abidin, 21030 Kuala Terengganu, Malaysia
| | - Sasikumar Swamiappan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas, 13200, Penang, Malaysia
| | - Hanumanth Rao Balaji Raghavendran
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Sri Ramachandra Institute of Higher Education and Research, Biomaterials Laboratory, Faculty of Clinical Research, Central Research Facility, Porur, Chennai 116, India.
| |
Collapse
|
7
|
Mikkelsen MD, Tran VHN, Meier S, Nguyen TT, Holck J, Cao HTT, Van TTT, Thinh PD, Meyer AS, Morth JP. Structural and functional characterization of the novel endo-α(1,4)-fucoidanase Mef1 from the marine bacterium Muricauda eckloniae. Acta Crystallogr D Struct Biol 2023; 79:1026-1043. [PMID: 37877949 PMCID: PMC10619423 DOI: 10.1107/s2059798323008732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Fucoidanases (EC 3.2.1.-) catalyze the hydrolysis of glycosidic bonds between fucose residues in fucoidans. Fucoidans are a compositionally and structurally diverse class of fucose-containing sulfated polysaccharides that are primarily found in brown seaweeds. Here, the structural characterization of a novel endo-α(1,4)-fucoidanase, Mef1, from the marine bacterium Muricauda eckloniae is presented, showing sequence similarity to members of glycoside hydrolase family 107. Using carbohydrate polyacrylamide gel electrophoresis and nuclear magnetic resonance analyses, it is shown that the fucoidanase Mef1 catalyzes the cleavage of α(1,4)-linkages between fucose residues sulfated on C2 in the structure [-3)-α-L-Fucp2S-(1,4)-α-L-Fucp2S-(1-]n in fucoidan from Fucus evanescens. Kinetic analysis of Mef1 activity by Fourier transform infrared spectroscopy revealed that the specific Mef1 fucoidanase activity (Uf) on F. evanescens fucoidan was 0.1 × 10-3 Uf µM-1. By crystal structure determination of Mef1 at 1.8 Å resolution, a single-domain organization comprising a (β/α)8-barrel domain was determined. The active site was in an extended, positively charged groove that is likely to be designed to accommodate the binding of the negatively charged, sulfated fucoidan substrate. The active site of Mef1 comprises the amino acids His270 and Asp187, providing acid/base and nucleophile groups, respectively, for the hydrolysis of glycosidic bonds in the fucoidan backbone. Electron densities were identified for two possible Ca2+ ions in the enzyme, one of which is partially exposed to the active-site groove, while the other is very tightly coordinated. A water wire was discovered leading from the exterior of the Mef1 enzyme into the active site, passing the tightly coordinated Ca2+ site.
Collapse
Affiliation(s)
- Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Vy Ha Nguyen Tran
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NhaTrang 650000, Vietnam
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NhaTrang 650000, Vietnam
| | - Pham Duc Thinh
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NhaTrang 650000, Vietnam
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Jens Preben Morth
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
8
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
9
|
Obluchinskaya ED, Pozharitskaya ON, Gorshenina EV, Zakharov DV, Flisyuk EV, Terninko II, Generalova YE, Shikov AN. Arctic Edible Brown Alga Fucus distichus L.: Biochemical Composition, Antiradical Potential and Human Health Risk. PLANTS (BASEL, SWITZERLAND) 2023; 12:2380. [PMID: 37376005 DOI: 10.3390/plants12122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Fucus distichus L. is the dominant canopy-forming macroalga in the rocky intertidal areas of the Arctic and Subarctic. In the present study, the impact of the geographic location of F. distichus collected in the Baffin Sea (BfS), Norwegian Sea (NS), White Sea (WS), and Barents Sea (BS) on the variations in biochemical composition, antiradical properties, and health risk was evaluated. The accumulation of main carbohydrates (fucoidan, mannitol, and alginic acid) varied from 335 mg/g dry weight (DW) in NS to 445 mg/g DW in BS. The highest level of the sum of polyphenols and flavonoids was found in samples of F. distichus from WS and was located in the following ranking order: BS < BfS < NS < WS. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of seaweed is correlated with its phenolic content. It is notable that in most Arctic F. distichus samples, Cd, Cr, Pb, and Ni were not detected or their concentrations were below the limit of quantification. According to calculated targeted hazard quotient and hazard index values, all studied samples of Arctic F. distichus are safe for daily consumption as they do not pose a carcinogenic risk to the health of adults or children. The results of this study support the rationale for using Arctic F. distichus as a rich source of polysaccharides, polyphenols, and flavonoids with important antiradical activity. We believe that our data will help to effectively use the potential of F. distichus and expand the use of this algae as a promising and safe raw material for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ekaterina D Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
| | - Elena V Gorshenina
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
| | - Denis V Zakharov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
- Zoological Institute RAS (ZIN RAS), 1 Universitetskaya Embankment, 199034 Saint-Petersburg, Russia
| | - Elena V Flisyuk
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| | - Inna I Terninko
- Core Shared Research Facilities "Analytical Center", St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| | - Yuliya E Generalova
- Core Shared Research Facilities "Analytical Center", St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| | - Alexander N Shikov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| |
Collapse
|
10
|
Kirsten N, Ohmes J, Mikkelsen MD, Nguyen TT, Blümel M, Wang F, Tasdemir D, Seekamp A, Meyer AS, Fuchs S. Impact of Enzymatically Extracted High Molecular Weight Fucoidan on Lipopolysaccharide-Induced Endothelial Activation and Leukocyte Adhesion. Mar Drugs 2023; 21:339. [PMID: 37367664 DOI: 10.3390/md21060339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
The endothelial cell lining creates an interface between circulating blood and adjoining tissue and forms one of the most critical barriers and targets for therapeutical intervention. Recent studies suggest that fucoidans, sulfated and fucose-rich polysaccharides from brown seaweed, show multiple promising biological effects, including anti-inflammatory properties. However, their biological activity is determined by chemical characteristics such as molecular weight, sulfation degree, and molecular structure, which vary depending on the source, species, and harvesting and isolation method. In this study, we investigated the impact of high molecular weight (HMW) fucoidan extract on endothelial cell activation and interaction with primary monocytes (MNCs) in lipopolysaccharide (LPS)-induced inflammation. Gentle enzyme-assisted extraction combined with fractionation by ion exchange chromatography resulted in well-defined and pure fucoidan fractions. FE_F3, with a molecular weight ranging from 110 to 800 kDa and a sulfate content of 39%, was chosen for further investigation of its anti-inflammatory potential. We observed that along with higher purity of fucoidan fractions, the inflammatory response in endothelial mono- and co-cultures with MNCs was reduced in a dose-dependent manner when testing two different concentrations. This was demonstrated by a decrease in IL-6 and ICAM-1 on gene and protein levels and a reduced gene expression of TLR-4, GSK3β and NF-kB. Expression of selectins and, consequently, the adhesion of monocytes to the endothelial monolayer was reduced after fucoidan treatment. These data indicate that the anti-inflammatory effect of fucoidans increases with their purity and suggest that fucoidans might be useful in limiting the inflammatory response of endothelial cells in cases of LPS-induced bacterial infection.
Collapse
Affiliation(s)
- Nora Kirsten
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Julia Ohmes
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106 Kiel, Germany
| | - Fanlu Wang
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, 24118 Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sabine Fuchs
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| |
Collapse
|
11
|
Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, Pogue R, Murray P, Major I, Rezoagli E. Polysaccharides-Naturally Occurring Immune Modulators. Polymers (Basel) 2023; 15:polym15102373. [PMID: 37242947 DOI: 10.3390/polym15102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.
Collapse
Affiliation(s)
- Emma J Murphy
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Gustavo Waltzer Fehrenbach
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ismin Zainol Abidin
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ciara Buckley
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Therese Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Robert Pogue
- Universidade Católica de Brasilia, QS 7 LOTE 1-Taguatinga, Brasília 71680-613, DF, Brazil
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
| | - Ian Major
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
12
|
A chitosan/fucoidan nanoparticle-loaded pullulan microneedle patch for differential drug release to promote wound healing. Carbohydr Polym 2023; 306:120593. [PMID: 36746584 DOI: 10.1016/j.carbpol.2023.120593] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Wound healing is a largely unmet medical issue in trauma, burn, and diabetes. In this study, a pullulan-based and nanoparticle-loaded smart microneedle patch is designed to release drugs differentially based on the needs of wound healing. Chitosan and fucoidan are first used to prepare moxifloxacin (MOX)-loaded nanoparticles (MOXNPs) with a diameter of 258.0 ± 10.86 nm, PDI 0.19 ± 0.06, and surface charge 45.1 ± 3.9 mV. MOXNPs, lidocaine (LH), and thrombin (TH) are then incorporated to a 30 % (w/w) pullulan-based microneedle patch (TH + LH + MOXNPs@MN). TH + LH + MOXNPs@MN possesses uniform and cone-shaped microneedles with a length of 725 μm, demonstrating good biocompatibility, sufficient strength for skin penetration, fast skin dissolution within 55 ± 5 min, rapid release of TH and LH within 1 h, and sustained release of MOX for 24 h. TH + LH + MOXNPs@MN heals mice skin wounds completely within 7 days and restores collagen deposition with accelerated cell proliferation, granulation, and reduced pro-inflammatory cytokines. In conclusion, this study utilizes combined polysaccharides to develop a smart multifunctional microneedle platform that achieves rapid hemostasis/analgesia and sustained bactericidal action. The smart and combined therapy is a potential strategy for high-quality wound healing.
Collapse
|
13
|
Characterization of an endo-1,3-fucanase from marine bacterium Wenyingzhuangia aestuarii: The first member of a novel glycoside hydrolase family GH174. Carbohydr Polym 2023; 306:120591. [PMID: 36746582 DOI: 10.1016/j.carbpol.2023.120591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Sulfated fucans are important marine polysaccharides with various biological and biomedical activities. Fucanases are favorable tools to establish the structure-activity relationships of sulfated fucans. Herein, gene fun174A was discovered from the genome of marine bacterium Wenyingzhuangia aestuarii OF219, and none of the pre-defined glycosidic hydrolase domains were predicted in the protein sequence of Fun174A. Recombinant Fun174A demonstrated a low optimal reaction pH at 5.5. It might degrade sulfated fucans in an endo-processive manner. Glycomics and NMR analyses proved that it specifically hydrolyzed α-1,3-l-fucoside bonds between 2-O-sulfated and non-sulfated fucose residues in the sulfated fucan from sea cucumber Isostichopus badionotus. D119, E120 and E218 were critical for the activity of Fun174A, as identified by site-directed mutagenesis. Three homologs of Fun174A were confirmed to exhibit endo-1,3-fucanase activities. The novelty on sequences of Fun174A and its homologs reveals a new glycoside hydrolase family, GH174.
Collapse
|
14
|
Wang S, Zhang B, Chang X, Zhao H, Zhang H, Zhao T, Qi H. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: a review. Crit Rev Food Sci Nutr 2023; 64:7707-7727. [PMID: 36971135 DOI: 10.1080/10408398.2023.2191135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Seaweed polysaccharides (SPs) obtained from seaweeds are a class of functional prebiotics. SPs can regulate glucose and lipid anomalies, affect appetite, reduce inflammation and oxidative stress, and therefore have great potential for managing metabolic syndrome (MetS). SPs are poorly digested by the human gastrointestinal tract but are available to the gut microbiota to produce metabolites and exert a series of positive effects, which may be the mechanism by which SPs render their anti-MetS effects. This article reviews the potential of SPs as prebiotics in the management of MetS-related metabolic disturbances. The structure of SPs and studies related to the process of their degradation by gut bacteria and their therapeutic effects on MetS are highlighted. In summary, this review provides new perspectives on SPs as prebiotics to prevent and treat MetS.
Collapse
Affiliation(s)
- Shaopeng Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Xintao Chang
- Department of Pharmacy, People's Hospital of Zhangqiu District, Jinan, Shandong, PR China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
| |
Collapse
|
15
|
Wang M, Veeraperumal S, Zhong S, Cheong KL. Fucoidan-Derived Functional Oligosaccharides: Recent Developments, Preparation, and Potential Applications. Foods 2023; 12:foods12040878. [PMID: 36832953 PMCID: PMC9956988 DOI: 10.3390/foods12040878] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Oligosaccharides derived from natural resources are attracting increasing attention as both food and nutraceutical products because of their beneficial health effects and lack of toxicity. During the past few decades, many studies have focused on the potential health benefits of fucoidan. Recently, new interest has emerged in fucoidan, partially hydrolysed into fuco-oligosaccharides (FOSs) or low-molecular weight fucoidan, owing to their superior solubility and biological activities compared with fucoidan. There is considerable interest in their development for use in the functional food, cosmetic, and pharmaceutical industries. Therefore, this review summarises and discusses the preparation of FOSs from fucoidan using mild acid hydrolysis, enzymatic depolymerisation, and radical degradation methods, and discusses the advantages and disadvantages of hydrolysis methods. Several purification steps performed to obtain FOSs (according to the latest reports) are also reviewed. Moreover, the biological activities of FOS that are beneficial to human health are summarised based on evidence from in vitro and in vivo studies, and the possible mechanisms for the prevention or treatment of various diseases are discussed.
Collapse
Affiliation(s)
- Min Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Postgraduate College, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (S.Z.); (K.-L.C.)
| | - Kit-Leong Cheong
- Department of Biology, Shantou University, Shantou 515063, China
- Correspondence: (S.Z.); (K.-L.C.)
| |
Collapse
|
16
|
Dubashynskaya NV, Gasilova ER, Skorik YA. Nano-Sized Fucoidan Interpolyelectrolyte Complexes: Recent Advances in Design and Prospects for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24032615. [PMID: 36768936 PMCID: PMC9916530 DOI: 10.3390/ijms24032615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The marine polysaccharide fucoidan (FUC) is a promising polymer for pharmaceutical research and development of novel drug delivery systems with modified release and targeted delivery. The presence of a sulfate group in the polysaccharide makes FUC an excellent candidate for the formation of interpolyelectrolyte complexes (PECs) with various polycations. However, due to the structural diversity of FUC, the design of FUC-based nanoformulations is challenging. This review describes the main strategies for the use of FUC-based PECs to develop drug delivery systems with improved biopharmaceutical properties, including nanocarriers in the form of FUC-chitosan PECs for pH-sensitive oral delivery, targeted delivery systems, and polymeric nanoparticles for improved hydrophobic drug delivery (e.g., FUC-zein PECs, core-shell structures obtained by the layer-by-layer self-assembly method, and self-assembled hydrophobically modified FUC particles). The importance of a complex study of the FUC structure, and the formation process of PECs based on it for obtaining reproducible polymeric nanoformulations with the desired properties, is also discussed.
Collapse
|
17
|
V. K. AD, Udduttula A, Jaiswal AK. Unveiling the secrets of marine-derived fucoidan for bone tissue engineering-A review. Front Bioeng Biotechnol 2023; 10:1100164. [PMID: 36698636 PMCID: PMC9868180 DOI: 10.3389/fbioe.2022.1100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Biomedical uses for natural polysaccharides of marine origin are growing in popularity. The most prevalent polysaccharides, including alginates, agar, agarose and carrageenan, are found in seaweeds. One among these is fucoidan, which is a sulfated polysaccharide derived from brown algae. Compared to many of the biomaterials of marine origin currently in research, it is more broadly accessible and less expensive. This polysaccharide comes from the same family of brown algae from which alginate is extracted, but has garnered less research compared to it. Although it was the subject of research beginning in the 1910's, not much has been done on it since then. Few researchers have focused on its potential for biomedical applications; nevertheless, a thorough knowledge of the molecular mechanisms behind its diverse features is still lacking. This review provides a quick outline of its history, sources, and organization. The characteristics of this potential biomaterial have also been explored, with a thorough analysis concentrating on its use in bone tissue engineering. With the preclinical research completed up to this point, the fucoidan research status globally has also been examined. Therefore, the study might be utilized as a comprehensive manual to understand in depth the research status of fucoidan, particularly for applications related to bone tissue engineering.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anjaneyulu Udduttula
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,*Correspondence: Amit Kumar Jaiswal,
| |
Collapse
|
18
|
FU-coating pH-sensitive liposomes for improving the release of gemcitabine by endosome escape in pancreatic cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Devi G.V. Y, Nagendra AH, Shenoy P. S, Chatterjee K, Venkatesan J. Fucoidan-Incorporated Composite Scaffold Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering. Mar Drugs 2022; 20:589. [PMID: 36286414 PMCID: PMC9604642 DOI: 10.3390/md20100589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Globally, millions of bone graft procedures are being performed by clinicians annually to treat the rising prevalence of bone defects. Here, the study designed a fucoidan from Sargassum ilicifolium incorporated in an osteo-inductive scaffold comprising calcium crosslinked sodium alginate-nano hydroxyapatite-nano graphene oxide (Alg-HA-GO-F), which tends to serve as a bone graft substitute. The physiochemical characterization that includes FT-IR, XRD, and TGA confirms the structural integration between the materials. The SEM and AFM reveal highly suitable surface properties, such as porosity and nanoscale roughness. The incorporation of GO enhanced the mechanical strength of the Alg-HA-GO-F. The findings demonstrate the slower degradation and improved protein adsorption in the fucoidan-loaded scaffolds. The slow and sustained release of fucoidan in PBS for 120 h provides the developed system with an added advantage. The apatite formation ability of Alg-HA-GO-F in the SBF solution predicts the scaffold's osteointegration and bone-bonding capability. In vitro studies using C3H10T1/2 revealed a 1.5X times greater cell proliferation in the fucoidan-loaded scaffold than in the control. Further, the results determined the augmented alkaline phosphatase and mineralization activity. The physical, structural, and enriching osteogenic potential results of Alg-HA-GO-F indicate that it can be a potential bone graft substitute for orthopedic applications.
Collapse
Affiliation(s)
- Yashaswini Devi G.V.
- Biomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Apoorva H Nagendra
- Stem Cells and Regenerative Medicine and Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sudheer Shenoy P.
- Stem Cells and Regenerative Medicine and Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kaushik Chatterjee
- Departmental of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jayachandran Venkatesan
- Biomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
20
|
Huang Y, Chen H, Zhang K, Lu Y, Wu Q, Chen J, Li Y, Wu Q, Chen Y. Extraction, purification, structural characterization, and gut microbiota relationship of polysaccharides: A review. Int J Biol Macromol 2022; 213:967-986. [PMID: 35697165 DOI: 10.1016/j.ijbiomac.2022.06.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023]
Abstract
Intestinal dysbiosis is one of the major causes of the occurrence of metabolic syndromes, such as obesity, diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases. Polysaccharide-based microbial therapeutic strategies have excellent potential in the treatment of metabolic syndromes, but the underlying regulatory mechanisms remain elusive. Identification of the internal regulatory mechanism of the gut microbiome and the interaction mechanisms involving bacteria and the host are essential to achieve precise control of the gut microbiome and obtain valuable clinical data. Polysaccharides cannot be directly digested; the behavior in the intestinal tract is considered a "bridge" between microbiota and host communication. To provide a relatively comprehensive reference for researchers in the field, we will discuss the polysaccharide extraction and purification processes and chemical and structural characteristics, focusing on the polysaccharides in gut microbiota through the immune system, gut-liver axis, gut-brain axis, energy axis interactions, and potential applications.
Collapse
Affiliation(s)
- Yuzhe Huang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Hao Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Kunfeng Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Yongming Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Qianzheng Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Jielin Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Yong Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Qingxi Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China.
| |
Collapse
|
21
|
Tran VHN, Nguyen TT, Meier S, Holck J, Cao HTT, Van TTT, Meyer AS, Mikkelsen MD. The Endo-α(1,3)-Fucoidanase Mef2 Releases Uniquely Branched Oligosaccharides from Saccharina latissima Fucoidans. Mar Drugs 2022; 20:305. [PMID: 35621956 PMCID: PMC9147238 DOI: 10.3390/md20050305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Fucoidans are complex bioactive sulfated fucosyl-polysaccharides primarily found in brown macroalgae. Endo-fucoidanases catalyze the specific hydrolysis of α-L-fucosyl linkages in fucoidans and can be utilized to tailor-make fucoidan oligosaccharides and elucidate new structural details of fucoidans. In this study, an endo-α(1,3)-fucoidanase encoding gene, Mef2, from the marine bacterium Muricauda eckloniae, was cloned, and the Mef2 protein was functionally characterized. Based on the primary sequence, Mef2 was suggested to belong to the glycosyl hydrolase family 107 (GH107) in the Carbohydrate Active enZyme database (CAZy). The Mef2 fucoidanase showed maximal activity at pH 8 and 35 °C, although it could tolerate temperatures up to 50 °C. Ca2+ was shown to increase the melting temperature from 38 to 44 °C and was furthermore required for optimal activity of Mef2. The substrate specificity of Mef2 was investigated, and Fourier transform infrared spectroscopy (FTIR) was used to determine the enzymatic activity (Units per μM enzyme: Uf/μM) of Mef2 on two structurally different fucoidans, showing an activity of 1.2 × 10-3 Uf/μM and 3.6 × 10-3 Uf/μM on fucoidans from Fucus evanescens and Saccharina latissima, respectively. Interestingly, Mef2 was identified as the first described fucoidanase active on fucoidans from S. latissima. The fucoidan oligosaccharides released by Mef2 consisted of a backbone of α(1,3)-linked fucosyl residues with unique and novel α(1,4)-linked fucosyl branches, not previously identified in fucoidans from S. latissima.
Collapse
Affiliation(s)
- Vy Ha Nguyen Tran
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (V.H.N.T.); (T.T.N.); (J.H.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Thuan Thi Nguyen
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (V.H.N.T.); (T.T.N.); (J.H.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Jesper Holck
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (V.H.N.T.); (T.T.N.); (J.H.)
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Anne S. Meyer
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (V.H.N.T.); (T.T.N.); (J.H.)
| | - Maria Dalgaard Mikkelsen
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (V.H.N.T.); (T.T.N.); (J.H.)
| |
Collapse
|