1
|
Felix AL, Penno SM, Bezerra FF, Mourão PAS. Fucosylated chondroitin sulfate, an intriguing polysaccharide from sea cucumber: past, present, and future. Glycobiology 2025; 35:cwae098. [PMID: 39706802 DOI: 10.1093/glycob/cwae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024] Open
Abstract
Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA. FCSs from different species of sea cucumbers share a similar chondroitin sulfate core but the structure of the sulfated α-Fuc branches varies significantly. The predominant pattern consists of a single unit of sulfated α-Fuc, though some species exhibit branches with multiple α-Fuc units. This comprehensive review focuses on four major aspects of FCS. Firstly, we describe the initial approaches to elucidate the structure of FCS using classical methods of carbohydrate chemistry. Secondly, we highlight the impact of two-dimensional NMR methods in consolidating and revealing further details about the structure of FCS. These studies were conducted by various researchers across different countries and involving multiple species of sea cucumbers. Thirdly, we summarize the biological activities reported for FCS. Our survey identified 104 publications involving FCS from 42 species of sea cucumbers, reporting 10 types of biological activities. Most studies focused on anticoagulant and antithrombotic activities. Finally, we discuss future perspectives for studies related to FCS. These studies aim to clarify the evolutionary advantage for sea cucumbers in developing such a peculiar fucosylated glycosaminoglycan. Additionally, there is a need to identify the enzymes and genes involved in the metabolism of this unique carbohydrate.
Collapse
Affiliation(s)
- Adriani L Felix
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Suzane M Penno
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Francisco F Bezerra
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Paulo A S Mourão
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| |
Collapse
|
2
|
Li X, Shen A, Xiao M, Li S, Yang W. New insights on health benefits, interactions with food components and potential application of marine-derived sulfated polysaccharides: A review. Int J Biol Macromol 2025; 294:139516. [PMID: 39761889 DOI: 10.1016/j.ijbiomac.2025.139516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Sulfated polysaccharides refer to polysaccharides containing sulfate groups on sugar units. In nature, sulfated polysaccharides are widely distributed in marine organisms, and the variation in sulfation sites, monosaccharide composition, and branched chain distribution among different species results in differences in the physicochemical properties and biological activities. From the latest perspective, this review summarized the types, structural characteristics, and potential health benefits of sulfated polysaccharides in marine foods. In recent years, marine-derived sulfated polysaccharides have been widely used as stabilizers and antimicrobial agents applied in nutraceutical delivery systems and food packaging, which depend on their interactions with food components. Hence, we outlined the non-covalent/covalent interactions of marine-derived sulfated polysaccharides with food components (e.g., proteins, polysaccharides, and polyphenols) as well as the application in food industry. Additionally, the prospects and potential development for sulfated polysaccharides are concluded, aiming to provide a deep understanding of marine-derived sulfated polysaccharides to promote the industrial application in food health.
Collapse
Affiliation(s)
- Xiquan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Ao Shen
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China
| | - Miaorong Xiao
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China
| | - Shuzhen Li
- Department of Immunology, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China.
| | - Weiwei Yang
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China.
| |
Collapse
|
3
|
Niu Q, Zhou H, Ma X, Jiang Y, Liu C, Wang W, Yu G, Li G. Anti-enterovirus 71 activity of native fucosylated chondroitin sulfates and their derivatives. Carbohydr Polym 2024; 346:122657. [PMID: 39245513 DOI: 10.1016/j.carbpol.2024.122657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Enterovirus 71 (EV71) is recognized as a major causative agent of hand, foot, and mouth disease (HFMD), posing a significant global public health concern due to its widespread impact and resulting in a major public health issue worldwide. Despite its prevalence, current clinical therapy lacks effective antiviral agents. Fucosylated chondroitin sulfates (FCS) derived from sea cucumber exhibits a range of biological activities including potent antiviral effects. This study provides compelling evidence of the potent antiviral efficacy of FCS against EV71. To further elucidate the impact of structural variations on the anti-EV71 activity, native FCSs with diverse sulfation patterns and a varity of FCS derivatives were prepared and analyzed. Notably, this study presents the detailed structural characterization of FCSs from the sea cucumbers Holothuria scabra Jaege and Holothuria fuscopunctata. Analysis of the structure-activity relationships revealed that molecular weight, sulfated fucose branches, and sulfation pattern were all crucial factors contributing to the potent inhibitory effects of FCS against EV71. Interestingly, molecular weight emerged as the most significant structural determinant of the antiviral potency. These findings suggest the promising potential of utilizing FCS as an innovative EV71 entry inhibitor for the treatment of HFMD.
Collapse
Affiliation(s)
- Qingfeng Niu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Han Zhou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Xiaoyao Ma
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Yuanyuan Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Chanjuan Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
4
|
Ju H, Fang W, Li HH, Fu Z, Gong PX, Liu Y, Lu S, Wu YC, Li HJ. Optimization of extraction process of polysaccharide from Phylloporia fontanesiae and its simulated digestion in vitro. J Food Sci 2024; 89:8804-8818. [PMID: 39437231 DOI: 10.1111/1750-3841.17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024]
Abstract
In this study, Phylloporia fontanesiae polysaccharide was successfully isolated through a sequential water extraction and alcohol precipitation process. Utilizing the Box-Behnken design, the extraction process was optimized based on single-factor experiments, considering variables such as the material-to-liquid ratio, extraction temperature, extraction time, and the number of extractions. The polysaccharide composition of P. fontanesiae is predominantly composed of mannose, glucuronic acid, glucose, and galactose, with a molar mass ratio of 4.31:4.10:36.83:1, along with minor amounts of aminoglucose and fucose. The polysaccharide fraction of P. fontanesiae comprises two distinct components, possessing relative molecular masses of 8.85 kDa and 134.03 kDa. Notably, the polysaccharide exhibited significant antioxidant activity. After undergoing simulated gastrointestinal digestion, no significant changes were observed in its antioxidant activity, molecular weight, or monosaccharide composition. This study not only enhanced the extraction efficiency of P. fontanesiae polysaccharide but also provided valuable insights into its composition, structure, and digestion characteristics. PRACTICAL APPLICATION: The optimum extraction process, stability, and antioxidant activity of Phylloporia fontanesiae polysaccharide during simulated digestion of gastrointestinal tract were studied. The results provide a theoretical basis for the development and application of this polysaccharide in the field of food and health products.
Collapse
Affiliation(s)
- Hao Ju
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Wei Fang
- Department of Pharmacy, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, PR China
| | - Hai-Huang Li
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Ze Fu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Pi-Xian Gong
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Yang Liu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Siqi Lu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Yan-Chao Wu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Hui-Jing Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| |
Collapse
|
5
|
Nagy V, Quader S, Másson M. Fine-tuning the cytotoxicity profile of N,N,N-trimethyl chitosan through trimethylation, molecular weight, and polyelectrolyte complex nanoparticles. Int J Biol Macromol 2024; 281:135805. [PMID: 39414536 DOI: 10.1016/j.ijbiomac.2024.135805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
N,N,N-trimethyl chitosan (TMC) is a promising biopolymer for pharmaceutical applications due to its enhanced solubility and bioadhesive properties, though its cytotoxic limitations necessitate careful modification to ensure safety and efficacy. This study sought to investigate whether nanoparticle (NP) formation could reduce the anticipated cytotoxic effects of TMC, thus improving its applicability across a wider spectrum of pharmaceutical uses. TMC's capability to form NPs with anionic polyelectrolytes led to the application of chondroitin sulfate (ChS) in this study. Five TMC samples, varying in degree of trimethylation (DTM 23, 32, 46, 50 and 99 %) and molecular weight (Mw, 66-290 kDa) were synthesized, and their biocompatibility with human umbilical vein endothelial cells (HUVECs) was assessed. The results revealed a discernible impact of both DTM and Mw on cell viability, with higher DTM and lower Mw correlating with increased toxicity. Cytotoxicity studies against ovarian cancer cell lines SKOV-3 and OVISE showed a clear indication of a higher cytotoxic effect of TMC samples against cancer cells compared to healthy cells (HUVEC). The cytotoxicity against cancer cells also indicated an optimal DTM for maximum efficacy, deviating from a linear trend. The effects of Mw were cell-dependent, introducing complexity to the observed relationship. Additionally, TMC-ChS NPs were successfully prepared, demonstrating a substantial reduction in cytotoxicity compared to TMC alone in all tested cells. This promising outcome suggests the potential of NP formation to fine-tune the cytotoxicity profile of TMC, paving the way for the development of safer and more effective pharmaceutical formulations.
Collapse
Affiliation(s)
- Vivien Nagy
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| |
Collapse
|
6
|
Yao Y, Shao F, Peng X, Wang H, Wang K, Zhu K. Emodin in-situ delivery with Pluronic F-127 hydrogel for myocardial infarction treatment: Enhancing efficacy and reducing hepatotoxicity. Life Sci 2024; 354:122963. [PMID: 39127316 DOI: 10.1016/j.lfs.2024.122963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
AIMS This study evaluates the therapeutic potential of emodin in enhancing the anti-inflammatory phenotype of macrophages, proposing a novel treatment strategy for myocardial infarction (MI). Our objective is to overcome the challenge of myocardial repair post-MI by developing an innovative in-situ myocardial drug delivery system that reduces associated hepatotoxicity. MATERIALS AND METHODS Through network pharmacology, it was identified that emodin primarily treats MI through anti-inflammatory actions. We investigated the influence of emodin on macrophage polarization using cellular assays and examined its therapeutic impacts and hepatotoxicity in animal models across various doses. A novel in-situ drug delivery system was devised using Pluronic F-127, a thermosensitive hydrogel, to enhance solubility and enable localized delivery to the myocardium. KEY FINDINGS In vitro studies confirmed that emodin effectively induces macrophage polarization toward an anti-inflammatory phenotype. In vivo analyses demonstrated a dose-dependent therapeutic effect on the myocardium, although higher doses led to significant hepatotoxicity. The innovative drug delivery system increased emodin's solubility, facilitated precise myocardial targeting, and markedly reduced systemic exposure and liver toxicity. SIGNIFICANCE This study introduces an advanced approach to treating MI by leveraging the natural anti-inflammatory properties of emodin combined with drug delivery technology. This strategy not only enhances the clinical feasibility of emodin for MI treatment but also represents a significant advancement in therapeutic methods. It focuses on increasing the drug concentration in the myocardium while minimizing the systemic side effects of the drug.
Collapse
Affiliation(s)
- Yu Yao
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong 643000, China
| | - Xiangfeng Peng
- Department of Nuclear Medicine, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong 643000, China
| | - Haili Wang
- Department of Nuclear Medicine, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong 643000, China
| | - Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Ke Zhu
- Department of Nuclear Medicine, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong 643000, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
7
|
Li XJ, Yin Y, Xiao SJ, Chen J, Zhang R, Yang T, Zhou TY, Zhang SY, Hu P, Zhang X. Extraction, structural characterization and immunoactivity of glucomannan type polysaccahrides from Lilium brownii var. viridulum Baker. Carbohydr Res 2024; 536:109046. [PMID: 38335805 DOI: 10.1016/j.carres.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Homogeneous polysaccharide (LBP) was extracted and purified from the bulblets of Lilium brownii var. viridulum Baker with a molecular weight of 312 kDa. The monosaccharides are composed of mannose and glucose, and the corresponding molar ratios are 0.582 and 0.418, respectively. FT-IR, LC-MS, NMR, GC-MS and HPAEC were used to analyze the functional groups, glycosidic linkages and chemical structure of LBP, which was a 1-4-linked glucomannan and contained a dodecasaccharide repeating units of →4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-α-D-Glcp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → . In vitro experimental results showed that LBP had noble biocompatibility, and a low dose of 5 μg/mL LBP significantly up-regulated the mRNA expression of TNF-α, iNOS, IL-6, IL-1β and Toll-like receptors family (TLRs) in RAW 264.7 cells. In conclusion, LBP played an important role in immunomodulation, and further studies on the specific immunomodulatory mechanisms of LBP on RAW 264.7 cells are still needed.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yuan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Shi-Jun Xiao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Jiang Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Rui Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Tong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Tong-Yu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Si-Yan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Pei Hu
- Jiangzhong Pharmaceutical Co., Ltd., No.1899 Meiling Road, Nanchang, 330103, PR China.
| | - Xue Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.
| |
Collapse
|
8
|
Lan D, Zhang J, Shang X, Yu L, Xu C, Wang P, Cui L, Cheng N, Sun H, Ran J, Sha L, Yin R, Gao N, Zhao J. Branch distribution pattern and anticoagulant activity of a fucosylated chondroitin sulfate from Phyllophorella kohkutiensis. Carbohydr Polym 2023; 321:121304. [PMID: 37739534 DOI: 10.1016/j.carbpol.2023.121304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Fucosylated chondroitin sulfate (FCS) extracted from Phyllophorella kohkutiensis (PkFCS) is composed of d-GalNAc, d-GlcA, l-Fuc and -SO42-. According to the defined structures revealed by NMR spectra of the branches released by mild acid hydrolysis and oligosaccharides generated by β-eliminative depolymerization, the backbone of PkFCS is CS-E, and the branch types attached to C-3 of d-GlcA include l-Fuc2S4S, l-Fuc3S4S, l-Fuc4S, and the disaccharide α-d-GalNAc-1,2-α-l-Fuc3S4S with the ratio of 43:13:22:22. Notably, novel heptasaccharide and hendecasaccharide were identified that are branched with continuous distribution of the disaccharide. The structural sequences of the oligosaccharides indicate that three unique structural motifs are present in the entire PkFCS polymer, including a motif branched with randomly distributed different sulfated l-Fuc units, a motif containing regular l-Fuc2S4S branches and a motif enriched in α-d-GalNAc-1,2-α-l-Fuc3S4S. This is the first report about the distribution pattern of diverse branches in natural FCS. Natural PkFCS exhibited potent anticoagulant activity on APTT prolonging and anti-iXase activity. Regarding the structurally defined oligosaccharides with sulfated fucosyl side chains, octasaccharide (Pk4b) is the minimum fragment responsible for its anticoagulant activity correlated with anti-iXase. However, further glycosyl modification with a non-sulfated d-GalNAc at the C-2 position of l-Fuc3S4S could significantly decrease the anticoagulant and anti-iXase activity.
Collapse
Affiliation(s)
- Di Lan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jiali Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiaolei Shang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Lijuan Yu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Pin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Lige Cui
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Nanqi Cheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Huifang Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jianing Ran
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Le Sha
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
9
|
Li JH, Zhu YY, Gu FT, Wu JY. Efficient isolation of immunostimulatory polysaccharides from Lentinula edodes by autoclaving-ultrasonication extraction and fractional precipitation. Int J Biol Macromol 2023; 237:124216. [PMID: 36990414 DOI: 10.1016/j.ijbiomac.2023.124216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/08/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
A hyphenated process, autoclaving followed by ultrasonication (AU), was evaluated for efficient extraction of polysaccharides (PS) from Lentinula edodes (Shiitake) mushroom. The PS yield (w/w) was 8.44 % from hot-water extraction (HWE), 11.01 % by autoclaving extraction (AE), and 16.3 % by AUE. The AUE water extract was subject to fractional precipitation in four-steps with increasing ethanol concentration of 40 %, 50 %, 70 % and 80 % (v/v), yielding four PS fractions in descending molecular weight (MW), PS40 > PS50 > PS70 > PS80. All the four PS fractions were composed of four monosaccharide residues, mannose (Man), glucose (Glc) and galactose (Gal) but in different mole ratios. The PS40 fraction with the highest average MW (4.98 × 106) was the most abundant fraction, accounting for 64.4 % of the total PS mass and also had the highest glucose molar ratio (~80 %). PS40 also most significantly enhanced the NO, and ROS generation and phagocytic activity in RAW 264.7 cells. The results proved that AUE followed by fractional ethanol precipitation is an efficient strategy with reduced solvent expenditure for isolation of the major immunostimulatory PS from L. edodes mushroom.
Collapse
|
10
|
Hao-Yu D, Ding-Yi Y, Bao-Hong X, Aihua S, Xiao-Qian D, Cun-Zhi L. Two Molecular Weights Holothurian Glycosaminoglycan and Hematoporphyrin Derivative-Photodynamic Therapy Inhibit Proliferation and Promote Apoptosis of Human Lung Adenocarcinoma Cells. Integr Cancer Ther 2023; 22:15347354221144310. [PMID: 36624619 PMCID: PMC9834781 DOI: 10.1177/15347354221144310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Holothurian glycosaminoglycan (hGAG) is extracted from the body wall of the sea cucumber, and previous studies have shown many unique bioactivities of hGAG, including antitumor, anti-angiogenesis, anti coagulation, anti thrombosis, anti-inflammation, antidiabetic effect, antivirus, and immune regulation. The effects of 3W and 5W molecular weights hGAG with hematoporphyrin derivative-photodynamic therapy (HPD-PDT) on lung cancer were investigated. Human lung adenocarcinoma A549 cells were divided into 6 groups: control group, 3W molecular weight hGAG group, 5W molecular weight hGAG group, HPD-PDT group, 3W molecular weight hGAG + HPD-PDT group, and 5W molecular weight hGAG + HPD-PDT group. Cell morphology was observed under inverted phase contrast microscope. Cell proliferative activity was detected by CCK8 and cell apoptosis was assayed by Hoechst33258 staining and flow cytometry. The results showed that two different molecular weights hGAG could inhibit proliferation, promote apoptosis rates of A549 cells, and enhance the sensitivity of A549 cells to HPD-PDT. The combined use of hGAG and HPD-PDT has synergistic inhibitory effects on A549 cells, and the effects of 3W molecular weight hGAG are better than that of 5W molecular weight hGAG.
Collapse
Affiliation(s)
- Dai Hao-Yu
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Yu Ding-Yi
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Xiao Bao-Hong
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Sui Aihua
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Ding Xiao-Qian
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China
| | - Lin Cun-Zhi
- The Affiliated Hospital of Qingdao
University, Qingdao, Shandong, China,Lin Cun-Zhi, Department of Respiratory and
Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao
266003, Shandong, China.
| |
Collapse
|
11
|
Wang K, Qi L, Zhao L, Liu J, Guo Y, Zhang C. Degradation of chondroitin sulfate: Mechanism of degradation, influence factors, structure-bioactivity relationship and application. Carbohydr Polym 2022; 301:120361. [PMID: 36446498 DOI: 10.1016/j.carbpol.2022.120361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
|
12
|
Liu Y, Chen Q, Ren R, Zhang Q, Yan G, Yin D, Zhang M, Yang Y. Platycodon grandiflorus polysaccharides deeply participate in the anti-chronic bronchitis effects of platycodon grandiflorus decoction, a representative of “the lung and intestine are related”. Front Pharmacol 2022; 13:927384. [PMID: 36160385 PMCID: PMC9489837 DOI: 10.3389/fphar.2022.927384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Platycodon grandiflorus (Jacq.) A. DC. (PG) root is one of the most commonly used medicine-food materials for respiratory discomfort in Asia, usually in the form of a decoction or leaching solution. As everyone knows, both of decoction and leaching solution is a polyphase dispersion system, containing low-molecular-weight water-soluble active ingredients and hydrophilic macromolecules. This study aimed to discuss the synergistic effect of Platycodon grandiflorus polysaccharide (PGP) and platycodin D (PD) in PG decoction against chronic bronchitis (CB) and the mechanism underlying. A series of PGP, PD, and PGD + PD suspensions were administrated to CB model rats, on the levels of whole animal and in situ intestinal segment with or without mesenteric lymphatic vessels ligation. It exhibited that PGP exhibited synergistic effects with PD, on improving the histopathological abnormity, mucus secretion excess, and immunological imbalance in lung of CB model rat, closely associated with its modulations on the mucosal immunity status in small intestine. The polysaccharide macromolecules in PG decoction or leaching solution should be responsible for the modulation of pulmonary immune state, possibly through the common mucosal immune between small intestine and lung. These results might be a new perspective that illustrates the classical theory of “the lung and intestine are related” in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingqing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rongrong Ren
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingqing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Guiming Yan
- School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- *Correspondence: Dengke Yin, ; Ye Yang,
| | - Mingyan Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- School of Nursing, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Dengke Yin, ; Ye Yang,
| |
Collapse
|