1
|
Chen B, Li W, Jiang X, Huang Z, Lin L, Lin X, He Z, Lin X. Entrapment of multi-scale structure of alginate beads stabilized with cellulose nanofibrils for potential intestinal delivery of lactic acid bacteria. Int J Biol Macromol 2024; 281:136363. [PMID: 39374729 DOI: 10.1016/j.ijbiomac.2024.136363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Soybean cellulose nanofibrils (SCNFs) were formed by autoclave-enzymatic hydrolysis combined with ball milling. SCNFs were blended with sodium alginate (SA) to encapsulate lactic acid bacteria (LAB) through inotropic gelation. The effect of SCNFs on the multiscale structure of SA beads, leading to changes in the survival and release of LAB during simulated digestion, was investigated. Microscopy and rheological testing indicated that SCNF10-30 was well-dispersed in the SA paste in the form of interlaced nanofibrils, and could reduce the deformation of the paste under stress by 47.31 %. Multiscale structural analysis indicated SCNF10-30 not only increased the immobilized water of SA beads by 15.59 % by coordinating calcium, but also regulated the in situ-assembly of SA beads, including an increase in the scale of dimers from 6.73 nm to 8.32 nm and improved arrangement, thus forming a dense gel network. LAB viability of SA-SCNF10-30 in simulated digestion was increased by 1.3 log CFU/g compared to SA beads. Cellulose nanofibrils improved gastrointestinal survival and controlled release of LAB better than fiber rods. This study provides a strategy to regulate the multiscale structure of SA beads through nanofibrils to enable stabilization and sustainable release of LAB in gastrointestinal fluids.
Collapse
Affiliation(s)
- Bingyan Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Weixin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Xinyan Jiang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China
| | - Zhiji Huang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lijuan Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Xiaojie Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zhigang He
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| | - Xiaozi Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Jing X, Zhang S, Zhang F, Chi C, Cui S, Ding H, Li J. Ultra-strong and tough cellulose-based conductive hydrogels via orientation inspired by noodles pre-stretching. Carbohydr Polym 2024; 340:122286. [PMID: 38858003 DOI: 10.1016/j.carbpol.2024.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Due to the unsatisfactory mechanical properties of natural polymer-based conductive hydrogels, their applications are limited. Shaanxi Biangbiang noodles can be toughened by applying external mechanical forces through stretching and beating movements; this process provides inspiration for the preparation of high-strength hydrogels. In this paper, we propose a strategy for the preparation of ultrastrong and ultratough conductive hydrogels by directional prestretching and solvent exchange. Neatly arranged fiber bundles containing many intermolecular hydrogen bonds and metal ion coordination bonds are successfully constructed inside the prepared hydrogels. The hydrogel has exceptional mechanical properties, with a fracture stress exceeding 50 MPa, fracture strain approaching 105 %, fracture toughness exceeding 30 MJ m-3, and high conductivity reaching 11.738 ± 0.06 mS m-1. Impressively, the hydrogel can maintain its high mechanical properties after being frozen at an ultralow temperature of -80 °C for 7 days. Compared with other tough hydrogels, natural tendons and synthetic rubbers, the hydrogel exhibits excellent mechanical properties. The cellulose-based conductive hydrogel prepared in this study can be applied to robotic soft tissues (such as the Achilles tendon) that require high strength and are operated in extreme environments.
Collapse
Affiliation(s)
- Xiaokai Jing
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Fengjiao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Congcong Chi
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Shuyuan Cui
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Hao Ding
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Jinrui Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| |
Collapse
|
3
|
Wang Y, Bao Y, Meng W. Lightweight Calcium-Silicate-Hydrate Nacre with High Strength and High Toughness. ACS NANO 2024; 18:23655-23671. [PMID: 39141799 DOI: 10.1021/acsnano.4c08200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Low flexural strength and toughness have posed enduring challenges to cementitious materials. As the main hydration product of cement, calcium silicate hydrate (C-S-H) plays important roles in the mechanical performance of cementitious materials while exhibiting random microstructures with pores and defects, which hinder mechanical enhancement. Inspired by the "brick-and-mortar" microstructure of natural nacre, this paper presents a method combining freeze casting, freeze-drying, in situ polymerization, and hot pressing to fabricate C-S-H nacre with high flexural strength, high toughness, and lightweight. Poly(acrylamide-co-acrylic acid) was used to disperse C-S-H and toughen C-S-H building blocks, which function as "bricks", while poly(methyl methacrylate) was impregnated as "mortar". The flexural strength, toughness, and density of C-S-H nacre reached 124 MPa, 5173 kJ/m3, and 0.98 g/cm3, respectively. The flexural strength and toughness of the C-S-H nacre are 18 and 1230 times higher than those of cement paste, respectively, with a 60% reduction in density, outperforming existing cementitious materials and natural nacre. This research establishes the relationship between material composition, fabrication process, microstructure, and mechanical performance, facilitating the design of high-performance C-S-H-based and cement-based composites for scalable engineering applications.
Collapse
Affiliation(s)
- Yuhuan Wang
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Yi Bao
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Weina Meng
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
4
|
Kim SY, Jung SY, Seo YB, Han JS. Preparation of Flexible Calcium Carbonate by In Situ Carbonation of the Chitin Fibrils and Its Use for Producing High Loaded Paper. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2978. [PMID: 37109814 PMCID: PMC10146684 DOI: 10.3390/ma16082978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Flexible calcium carbonate (FCC) was developed as a functional papermaking filler for high loaded paper, which was a fiber-like shaped calcium carbonate produced from the in situ carbonation process on the cellulose micro-or nanofibril surface. Chitin is the second most abundant renewable material after cellulose. In this study, a chitin microfibril was utilized as the fibril core for making the FCC. Cellulose fibrils for the preparation of FCC were obtained by fibrillation of the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) treated wood fibers. The chitin fibril was obtained from the β-chitin from the born of squid fibrillated in water by grinding. Both fibrils were mixed with calcium oxide and underwent a carbonation process by the addition of carbon dioxide, thus the calcium carbonate attached on the fibrils to make FCC. When used in papermaking, both the FCC from chitin and cellulose gave a much higher bulk and tensile strength simultaneously than the conventional papermaking filler of ground calcium carbonate, while maintaining the other essential properties of paper. The FCC from chitin caused an even higher bulk and higher tensile strength than those of the FCC from cellulose in paper materials. Furthermore, the simple preparation method of the chitin FCC in comparison with the cellulose FCC may enable a reduction in the use of wood fibers, process energy, and the production cost of paper materials.
Collapse
Affiliation(s)
- Sang Yun Kim
- Department of Bio-Based Materials, Chungnam National University, Yousung-Gu, Daejeon 34134, Republic of Korea
| | - Sun Young Jung
- Department of Bio-Based Materials, Chungnam National University, Yousung-Gu, Daejeon 34134, Republic of Korea
| | - Yung Bum Seo
- Department of Bio-Based Materials, Chungnam National University, Yousung-Gu, Daejeon 34134, Republic of Korea
| | - Jung Soo Han
- Institute of Agricultural Science, Chungnam National University, Yousung-Gu, Daejeon 34134, Republic of Korea
| |
Collapse
|