1
|
Saadah OI, AlAmeel T, Al Sarkhy A, Hasosah M, Al-Hussaini A, Almadi MA, Al-Bawardy B, Altuwaijri TA, AlEdreesi M, Bakkari SA, Alharbi OR, Azzam NA, Almutairdi A, Alenzi KA, Al-Omari BA, Almudaiheem HY, Al-Jedai AH, Mosli MH. Saudi consensus guidance for the diagnosis and management of inflammatory bowel disease in children and adolescents. Saudi J Gastroenterol 2024:00936815-990000000-00101. [PMID: 39215473 DOI: 10.4103/sjg.sjg_171_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT The management of inflammatory bowel disease (IBD) in children and adolescents is challenging. Clear evidence-based guidelines are required for this population. This article provides recommendations for managing IBD in Saudi children and adolescents aged 6-19 years, developed by the Saudi Ministry of Health in collaboration with the Saudi Society of Clinical Pharmacy and the Saudi Gastroenterology Association. All 57 guideline statements are based on the most up-to-date information for the diagnosis and management of pediatric IBD.
Collapse
Affiliation(s)
- Omar I Saadah
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Inflammatory Bowel Disease Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Turki AlAmeel
- Department of Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ahmed Al Sarkhy
- Gastroenterology Unit, Pediatrics Department, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Hasosah
- Department of Pediatrics, Gastroenterology Unit, King Abdulaziz Medical City, National Guard Hospital, Jeddah, Saudi Arabia
- Department of Pediatric Gastroenterology, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Pediatric Gastroenterology, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman Al-Hussaini
- Children's Specialized Hospital, King Fahad Medical City, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Majid A Almadi
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Badr Al-Bawardy
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia, Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Talal A Altuwaijri
- Department of Surgery, Division of Vascular Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed AlEdreesi
- Gastroenterology Unit, Pediatric Department, Al Habib Medical Group, Khobar, Saudi Arabia
| | - Shakir A Bakkari
- Department of Gastroenterology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Othman R Alharbi
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Nahla A Azzam
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Abdulelah Almutairdi
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Khalidah A Alenzi
- Executive Management of Transformation, Planning, and Business Development, Tabuk Health Cluster, Tabuk, Saudi Arabia
| | - Bedor A Al-Omari
- Department of Pharmaceutical Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Ahmed H Al-Jedai
- Deputyship of Therapeutic Affairs, Ministry of Health, Riyadh, Saudi Arabia
- Colleges of Medicine and Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahmoud H Mosli
- Department of Internal Medicine, King Abdulaziz University, Inflammatory Bowel Disease Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Racaniello GF, Silvestri T, Pistone M, D'Amico V, Arduino I, Denora N, Lopedota AA. Innovative Pharmaceutical Techniques for Paediatric Dosage Forms: A Systematic Review on 3D Printing, Prilling/Vibration and Microfluidic Platform. J Pharm Sci 2024; 113:1726-1748. [PMID: 38582283 DOI: 10.1016/j.xphs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The production of paediatric pharmaceutical forms represents a unique challenge within the pharmaceutical industry. The primary goal of these formulations is to ensure therapeutic efficacy, safety, and tolerability in paediatric patients, who have specific physiological needs and characteristics. In recent years, there has been a significant increase in attention towards this area, driven by the need to improve drug administration to children and ensure optimal and specific treatments. Technological innovation has played a crucial role in meeting these requirements, opening new frontiers in the design and production of paediatric pharmaceutical forms. In particular, three emerging technologies have garnered considerable interest and attention within the scientific and industrial community: 3D printing, prilling/vibration, and microfluidics. These technologies offer advanced approaches for the design, production, and customization of paediatric pharmaceutical forms, allowing for more precise dosage modulation, improved solubility, and greater drug acceptability. In this review, we delve into these cutting-edge technologies and their impact on the production of paediatric pharmaceutical forms. We analyse their potential, associated challenges, and recent developments, providing a comprehensive overview of the opportunities that these innovative methodologies offer to the pharmaceutical sector. We examine different pharmaceutical forms generated using these techniques, evaluating their advantages and disadvantages.
Collapse
Affiliation(s)
| | - Teresa Silvestri
- Department of Pharmacy, University of Naples Federico II, D. Montesano St. 49, 80131 Naples, Italy
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Vita D'Amico
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
3
|
Nie C, Liang Q, Gao Q. Preparation of Eudragit S100-pullulan/hydroxypropyl-β-cyclodextrin complex-Eudragit S100 multilayer nanofiber film for resveratrol colon delivery. Int J Biol Macromol 2024; 270:132388. [PMID: 38754685 DOI: 10.1016/j.ijbiomac.2024.132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Cyclodextrin-based electrospun nanofibers are promising for encapsulating and preserving unstable compounds, but quick dissolution of certain nanofibers hinders their delivery application. In this study, hydroxypropyl-β-cyclodextrin (HPβCD) was used as an effective carrier of resveratrol (RSV) to obtain the RSV/HPβCD inclusion complex (HPIC), which was then incorporated into pullulan nanofibers. For enhancement of RSV release toward colon target, multilayer structure with a pullulan/HPIC film sandwiched between two layers of hydrophobic Eudragit S100 (ES100) nanofibers was employed. The relationship between the superiority of the ES100-pullulan/HPIC-ES100 film and its multilayer structure was verified. The intimate interactions of hydrogen bonds between two adjacent layers enhanced thermal stability, and the hydrophobic outer layers improved water contact resistance. According to release results, multilayer films also showed excellent colon-targeted delivery property and approximately 78.58 % of RSV was observed to release in colon stage. In terms of release mechanism, complex mechanism best described RSV colonic release. Additionally, ES100-pullulan/HPIC-ES100 multilayer films performed higher encapsulation efficiency when compared to the structures without HPIC, which further increased the antioxidant activity and total release amount of RSV. These results suggest a promising strategy for designing safe colonic delivery systems based on multilayer and HPIC structures with superior preservation for RSV.
Collapse
Affiliation(s)
- Congyi Nie
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Qian Liang
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China.
| |
Collapse
|
4
|
Illanes-Bordomás C, Landin M, García-González CA. Aerogels as Carriers for Oral Administration of Drugs: An Approach towards Colonic Delivery. Pharmaceutics 2023; 15:2639. [PMID: 38004617 PMCID: PMC10674668 DOI: 10.3390/pharmaceutics15112639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Polysaccharide aerogels have emerged as a highly promising technology in the field of oral drug delivery. These nanoporous, ultralight materials, derived from natural polysaccharides such as cellulose, starch, or chitin, have significant potential in colonic drug delivery due to their unique properties. The particular degradability of polysaccharide-based materials by the colonic microbiota makes them attractive to produce systems to load, protect, and release drugs in a controlled manner, with the capability to precisely target the colon. This would allow the local treatment of gastrointestinal pathologies such as colon cancer or inflammatory bowel diseases. Despite their great potential, these applications of polysaccharide aerogels have not been widely explored. This review aims to consolidate the available knowledge on the use of polysaccharides for oral drug delivery and their performance, the production methods for polysaccharide-based aerogels, the drug loading possibilities, and the capacity of these nanostructured systems to target colonic regions.
Collapse
Affiliation(s)
| | - Mariana Landin
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Carlos A. García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| |
Collapse
|
5
|
Pistone M, Racaniello GF, Rizzi R, Iacobazzi RM, Arduino I, Lopalco A, Lopedota AA, Denora N. Direct cyclodextrin based powder extrusion 3D printing of budesonide loaded mini-tablets for the treatment of eosinophilic colitis in paediatric patients. Int J Pharm 2023; 632:122592. [PMID: 36626971 DOI: 10.1016/j.ijpharm.2023.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to combine direct powder extrusion (DPE) 3D printing and fluid bed coating techniques to create a budesonide (BD) loaded solid oral formulations for the treatment of eosinophilic colitis (EC) in paediatric patients. The preferred medication for EC treatment is BD, which has drawbacks due to its poor water solubility and low absorption. Additionally, since commercially available medications for EC treatment are created and approved for adult patients, administering them to children sometimes requires an off-label use and an impromptu handling, which can result in therapeutic ineffectiveness. The DPE 3D approach was investigated to create Mini-Tablets (MTs) to suit the swallowing, palatability, and dose flexibility control requirements needed by paediatric patients. Additionally, DPE 3D and the inclusion of hydroxypropyl-β-cyclodextrin in the initial powder mixture allowed for an improvement in the solubility and rate of BD dissolution in aqueous medium. Then, to accomplish a site-specific drug release at the intestinal level, MTs were coated with a layer of Eudragit FS 30D, an enteric polymer responsive at pH > 7.0 values. In vitro release experiments showed that film-coated MTs were suitable in terms of size and dose, enabling potential therapeutic customization and targeted delivery of BD to the colon.
Collapse
Affiliation(s)
- Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
| | | | - Rosanna Rizzi
- Institute of Crystallography-CNR, Amendola St. 122/o, 70126 Bari, Italy
| | - Rosa Maria Iacobazzi
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy.
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy.
| |
Collapse
|