1
|
Zhu Y, Xu W, Feng C, Zhu L, Ji L, Wang K, Jiang J. Study on structure and properties of galactomannan and enzyme changes during fenugreek seeds germination. Carbohydr Polym 2024; 327:121653. [PMID: 38171675 DOI: 10.1016/j.carbpol.2023.121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Fenugreek (Trigonella foenum-graecum L) galactomannan play an important role in the food and pharmaceutical sectors due to its attractive physicochemical properties. In this study, the changes of structure, properties and biological activity of fenugreek galactomannan (FG) during germination are analyzed by the activity and mechanism of endogenous enzymes (α-D-galactosidase and β-D-mannanase). The enzymes generally increased during germination and synergistically altered the structure of GM by cutting down the main chains and removing partial side residues. The mannose to galactose ratio (M/G) increased from 1.11 to 1.59, which is accompanied by a drastic decrease in molecular weight from 3.606 × 106 to 0.832 × 106 g/mol, and the drop of viscosity from 0.27 to 0.06 Pa·sn. The degraded macromolecules are attributed to the increase in solubility (from 64.55 % to 88.62 %). In terms of antioxidation and antidiabetic ability, germinated fenugreek galactomannan has the ability to scavenge 67.17 % ABTS free radicals and inhibit 86.89 % α-glucosidase. This galactomannan with low molecular weight and excellent biological activity precisely satisfies the current demands of pharmaceutical reagents and food industry. Seeds germination holds promise as a means of industrial scale production of low molecular weight galactomannans.
Collapse
Affiliation(s)
- Yana Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Wei Xu
- School of Materials Science and Engineering, Linyi University, Linyi 276005, China
| | - Chi Feng
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Liwei Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Kun Wang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Ning R, Liu C, Cheng X, Lei F, Zhang F, Xu W, Zhu L, Jiang J. Fabrication of multi-functional biodegradable liquid mulch utilizing xyloglucan derived from tamarind waste for agricultural application. Int J Biol Macromol 2024; 257:128627. [PMID: 38070803 DOI: 10.1016/j.ijbiomac.2023.128627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
Biodegradable liquid mulch is considered a promising alternative to plastic mulch for sustainable agriculture. This work proposed a xyloglucan-based liquid mulch with multi-function using a combination of chemical modification and blending methods. The esterification product of tamarind xyloglucan (TXG) from forestry wastes was synthesized with benzoic anhydride (BA). The effect of esterification modification was investigated, and BA-TXG was utilized as a film-forming and sand-fixation agent. The rheological properties, thermal stability, and hydrophobicity were improved following esterification. Additionally, waterborne polyurethane and urea were incorporated into the mulch to enhance its mechanical strength (23.28 MPa, 80.71 %), and homogeneity, as well as improve its nutritive properties. The xyloglucan-based liquid mulch has excellent UV protection, a high haze value (approximately 90 %), and retains water at a rate of 80.45 %. SEM and immersion experiment showed the effect of xyloglucan-based liquid mulch on sustainable sand-fixation. Moreover, the liquid mulch treatment demonstrated an impressive germination rate of 83.8 % and degradation rate of 51.59 % (60 days). The modified polysaccharide film increases stability and slows down the degradation rate. Tamarind xyloglucan-based liquid mulch exhibits powerful and diverse optical properties as well as sand fixation functions, indicating their great potential in sustainable agriculture as an alternative to plastic mulch.
Collapse
Affiliation(s)
- Ruxia Ning
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Chuanjie Liu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Xichuang Cheng
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Wei Xu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Liwei Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|