1
|
Chen Y, An D, Li S, Zhang X, Liang H, Li B, Li J. Oxygen promotes radical-mediated heterogeneous hygrothermal degradation of konjac glucomannan: Molecular structure and influence mechanism. Int J Biol Macromol 2024; 289:138848. [PMID: 39701263 DOI: 10.1016/j.ijbiomac.2024.138848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/12/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Heterogeneous hygrothermal degradation (HHTD) efficiently produces partially depolymerized konjac glucomannan (KGM). However, KGM degrades considerably faster in oxygen-containing air packaging than in oxygen-free vacuum packaging. This study investigated the effects of different atmosphere conditions on the molecular structure of KGM and the radicals involved in its degradation system. Results indicated that the presence of oxygen increased the CO generation in depolymerized KGM molecules and the chain conformation parameters α and β values but lowered the df value. The radical type responsible for the HHTD of KGM in different atmosphere conditions was primarily carbon-centered radicals with a g-factor of 2.0033. The relative radical intensity increased with increasing treatment temperature and time. The presence of oxygen dramatically enhanced the HHTD efficiency of KGM by increasing the radical generation rate in the degradation system. Therefore, the HHTD of KGM was a radical-mediated thermo-oxidative degradation reaction, and convenient air-containing heat-sealed packaging could achieve efficient HHTD similar to pure oxygen packaging. This study provides insight into the mechanism by which oxygen influences the HHTD of KGM, highlighting the great potential of HHTD as an efficient and convenient method for KGM degradation.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China; College of Food and Bioengineering, Henan University of Science and Technology, Henan 471000, China
| | - Ding An
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Xinshuai Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Food and Bioengineering, Henan University of Science and Technology, Henan 471000, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China.
| |
Collapse
|
2
|
Zhu B, Wang J, You L, Lin L, Lin K, Hileuskaya K. Calcium Transport Activity of UV/H 2O 2-Degraded Fucoidans and Their Structural Characterization. Mar Drugs 2024; 22:499. [PMID: 39590779 PMCID: PMC11595268 DOI: 10.3390/md22110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Calcium-chelated polysaccharides have been increasingly considered as promising calcium supplements. In this study, degraded fucoidans (DFs) with different molecular weights (Mws) were prepared after UV/H2O2 treatment; their calcium-chelating capacities and intestinal absorption properties were also investigated. The results showed that the calcium-chelating capacities of DFs were improved with a decrease in Mw. This was mainly ascribed to the increased carboxyl content, which was caused by free-radical-mediated degradation. Meanwhile, the conformation of DF changed from a rod-like chain to a shorter and softer chain. The thermodynamic analysis demonstrated that DF binding to calcium was spontaneously driven by electrostatic interactions. Additionally, DF-Ca chelates with lower Mw showed favorable transport properties across a Caco-2 cell monolayer and could effectively accelerate the calcium influx through intestinal enterocytes. Furthermore, these chelates also exhibited a protective effect on the epithelial barrier by alleviating damage to tight junction proteins. These findings provide an effective free-radical-related approach for the development of polysaccharide-based calcium supplements with improved intestinal calcium transport ability.
Collapse
Affiliation(s)
- Biyang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (B.Z.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Jiacheng Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (B.Z.)
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (B.Z.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies, Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (B.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technologies, Research Center, Guangzhou 510641, China
| | - Kuncheng Lin
- Greenfresh (Fujian) Foodstuff Co., Ltd., Zhangzhou 363000, China
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36F. Skaryna str., 220141 Minsk, Belarus
| |
Collapse
|
3
|
He Z, Zhu B, Deng L, You L. Effects of UV/H 2O 2 Degradation on the Physicochemical and Antibacterial Properties of Fucoidan. Mar Drugs 2024; 22:209. [PMID: 38786600 PMCID: PMC11123097 DOI: 10.3390/md22050209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The applications of fucoidan in the food industry were limited due to its high molecular weight and low solubility. Moderate degradation was required to depolymerize fucoidan. A few studies have reported that fucoidan has potential antibacterial activity, but its antibacterial mechanism needs further investigation. In this study, the degraded fucoidans were obtained after ultraviolet/hydrogen peroxide treatment (UV/H2O2) at different times. Their physicochemical properties and antibacterial activities against Staphylococcus aureus and Escherichia coli were investigated. The results showed that the average molecular weights of degraded fucoidans were significantly decreased (up to 22.04 times). They were mainly composed of fucose, galactose, and some glucuronic acid. Fucoidan degraded for 90 min (DFuc-90) showed the strongest antibacterial activities against Staphylococcus aureus and Escherichia coli, with inhibition zones of 27.70 + 0.84 mm and 9.25 + 0.61 mm, respectively. The minimum inhibitory concentrations (MIC) were 8 mg/mL and 4 mg/mL, respectively. DFuc-90 could inhibit the bacteria by damaging the cell wall, accumulating intracellular reactive oxygen species, reducing adenosine triphosphate synthesis, and inhibiting bacterial metabolic activity. Therefore, UV/H2O2 treatment could effectively degrade fucoidan and enhance its antibacterial activity.
Collapse
Affiliation(s)
| | | | | | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Z.H.); (B.Z.); (L.D.)
| |
Collapse
|
4
|
Zhu B, Ma C, You L. Degradation Mechanisms of Six Typical Glucosidic Bonds of Disaccharides Induced by Free Radicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5439-5451. [PMID: 38412221 DOI: 10.1021/acs.jafc.3c09344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Increasing hydrogen peroxide (H2O2)-based systems have been developed to degrade various polysaccharides due to the presence of highly reactive free radicals, but published degradation mechanisms are still limited. Therefore, this study aimed to clarify the degradation mechanism of six typical glucosidic bonds from different disaccharides in an ultraviolet (UV)/H2O2 system. The results showed that the H2O2 concentration, disaccharide concentration, and radiation intensity were important factors affecting pseudo-first-order kinetic constants. Hydroxyl radical, superoxide radical, and UV alone contributed 58.37, 18.52, and 19.17% to degradation, respectively. The apparent degradation rates ranked in the order of cellobiose ≈ lactose > trehalose ≈ isomaltose > turanose > sucrose ≈ maltose. The reaction pathways were then deduced after identifying their degradation products. According to quantum chemical calculations, the cleavage of α-glycosidic bonds was more kinetically unfavorable than that of β-glycosidic bonds. Additionally, the order of apparent degradation rates depended on the energy barriers for the formation of disaccharide-based alkoxyl radicals. Moreover, energy barriers for homolytic scissions of glucosidic C1-O or C7-O sites of these alkoxyl radicals ranked in the sequence: α-(1 → 2) ≈ α-(1 → 3) < α-(1 → 4) < β-(1 → 4) < α-(1 → 6) < α-(1 → 1) glucosidic bonds. This study helps to explain the mechanisms of carbohydrate degradation by free radicals.
Collapse
Affiliation(s)
- Biyang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Cong Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
5
|
Chen Y, Zhao T, Cheng L, Yang B, Wen L. Degree of methyl esterification: A key factor for the encapsulation of icaritin with pectin. Int J Biol Macromol 2024; 260:129361. [PMID: 38218280 DOI: 10.1016/j.ijbiomac.2024.129361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Pectin is a promising nano-carrier. The degree of methyl esterification (DM) influences the physiochemical properties of pectin. However, the effect of DM on the encapsulation capacity of pectin remains unclear. In this work, low methyl-esterified pectin (LMP) and high methyl-esterified pectin (HMP) were prepared. The molecular weight, rheological properties of these pectins with various DM levels were determined. Then icaritin/pectin micelles (IPMs) were prepared using HMP and LMP. Notably, higher loading capacities (18.75-20.12 %) were observed in HMP-IPMs compared to LMP-IPMs (15.72-16.64 %). Furthermore, LMP-IPMs demonstrated a DM-dependent reduction in particle sizes, ranging from 449 to 527 nm. In contrast, the particle sizes of HMP-IPMs varied between 342 and 566 nm, with smaller particle sizes observed in HMP-IPMs at higher DM levels. A significant positive correlation was found between DM and the formation of IPMs, including encapsulation efficiency, loading capacity, Zeta potential, and polydispersity index. Alkali de-esterification showed a weak impact on the pectin structure. Hydroxyl groups like 7-OH and 5-OH of icaritin might be involved in the formation of IPMs. The hydrogen-bond interactions between pectin and icaritin could be enhanced as DM increased.
Collapse
Affiliation(s)
- Yipeng Chen
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lina Cheng
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Bao Yang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingrong Wen
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Yao W, Yong J, Lv B, Guo S, You L, Cheung PCK, Kulikouskaya VI. Enhanced In Vitro Anti-Photoaging Effect of Degraded Seaweed Polysaccharides by UV/H 2O 2 Treatment. Mar Drugs 2023; 21:430. [PMID: 37623711 PMCID: PMC10455735 DOI: 10.3390/md21080430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The high molecular weight and poor solubility of seaweed polysaccharides have limited their function and application. In this study, ultraviolet/hydrogen peroxide (UV/H2O2) treatment was used to prepare low-molecular-weight seaweed polysaccharides from Sargassum fusiforme. The effects of UV/H2O2 treatment on the physicochemical properties and anti-photoaging activity of S. fusiforme polysaccharides were studied. UV/H2O2 treatment effectively degraded polysaccharides from S. fusiforme (DSFPs), reducing their molecular weight from 271 kDa to 26 kDa after 2 h treatment. The treatment did not affect the functional groups in DSFPs but changed their molar percentage of monosaccharide composition and morphology. The effects of the treatment on the anti-photoaging function of S. fusiforme polysaccharides were investigated using human epidermal HaCaT cells in vitro. DFSPs significantly improved the cell viability and hydroxyproline secretion of UVB-irradiated HaCaT cells. In particular, DSFP-45 obtained from UV/H2O2 treatment for 45 min showed the best anti-photoaging effect. Moreover, DSFP-45 significantly increased the content and expression of collagen I and decreased those of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α. Thus, UV/H2O2 treatment could effectively improve the anti-photoaging activity of S. fusiforme polysaccharides. These results provide some insights for developing novel and efficient anti-photoaging drugs or functional foods from seaweed polysaccharides.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Jiayu Yong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Bingxue Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Siyu Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Viktoryia I. Kulikouskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 Skaryna Str., 220141 Minsk, Belarus;
| |
Collapse
|