1
|
Ye X, Wei L, Sun L, Xu Q, Cao J, Li H, Pang Z, Liu X. Fabrication of food polysaccharide, protein, and polysaccharide-protein composite gels via calcium ion inducement: Gelation mechanisms, conditional factors, and applications. Int J Biol Macromol 2024; 279:135397. [PMID: 39245115 DOI: 10.1016/j.ijbiomac.2024.135397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Food gel is a kind of macromolecular biopolymer with viscoelasticity, which has good water retention and gelling ability, especially gels formed by protein and/or polysaccharide. The addition of calcium ions triggers gelation by interacting with the gel matrix, enhancing gels' textural and rheological properties like hardness, viscosity and elasticity. Thus calcium ions enrich the range of applications of food gels. This review focuses on forming a calcium-induced gel and improving the texture properties. It summarizes the mechanisms of gelation induced by calcium ions in polysaccharide, protein, and polysaccharide-protein systems and their gel properties. The effects of influencing factors in calcium ion concentration, types and mixing ratios of matrices, acid, and alkaline environments, as well as treatment methods on calcium-induced gel characteristics, are presented. Additionally, the current applications of calcium-induced gels in food industries and challenges are presented.
Collapse
Affiliation(s)
- Xinnan Ye
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Lai Wei
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Luyao Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Qiaolian Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Jinnuo Cao
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Zhiwei (Handan) Health Food Technology Co., Ltd, Handan 056000, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Zhihua Pang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Liu H, Li W, Xu J, Zhou Q, Liu Y, Yang Y, Sui X, Xiao Y. Conformational changes induced by cellulose nanocrystals in collaboration with calcium ion improve solubility of pea protein isolate. Carbohydr Polym 2024; 343:122481. [PMID: 39174102 DOI: 10.1016/j.carbpol.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
The low solubility of pea protein isolate (PPI) greatly limits its functional properties and its wide application in food field. Thus, this study investigated the effects and mechanisms of cellulose nanocrystals (CNC) (0.1-0.4 %) and CaCl2 (0.4-1.6 mM) on the solubility of PPI. The results showed that the synergistic effect of CNC (0.3 %) and Ca2+ (1.2 mM) increased the solubility of PPI by 242.31 %. CNC and Ca2+ changed the molecular conformation of PPI, enhanced intermolecular forces, and thus induced changes in the molecular morphology of PPI. Meanwhile, the turbidity of PPI decreased, while surface hydrophobicity, the absolute zeta potential value, viscoelasticity, β-sheet ratio, and thermal properties increased. CNC bound to PPI molecules through van der Waals force and hydrogen bond. Ca2+ could strengthen the crosslinking between CNC and PPI. In summary, it is proposed a valuable combination method to improve the solubility of PPI, and it is believed that this research is of great significance for expanding the application fields of PPI and modifying plant proteins.
Collapse
Affiliation(s)
- Huixia Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Weixiao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jianxia Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yin Yang
- Anhui Bi Lv Chun Biotechnology Co., Ltd., Chuzhou 239200, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Shen R, Yang X, Liu M, Wang L, Zhang L, Ma X, Zhu X, Tong L. Preparation of bovine serum albumin-arabinoxylan cold-set gels by glucono-δ-lactone and salt ions double induction. Int J Biol Macromol 2024; 277:133596. [PMID: 38960269 DOI: 10.1016/j.ijbiomac.2024.133596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
In order to investigate the effect of glucono-δ-lactone (GDL) and different salt ions (Na+ and Ca2+) induction on the cold-set gels of bovine serum albumin (BSA)-arabinoxylan (AX), the gel properties and structure of BSA-AX cold-set gels were evaluated by analyzing the gel strength, water-holding capacity, thermal properties, and Fourier Transform Infrared (FTIR) spectra. It was shown that the best gel strength (109.15 g) was obtained when the ratio of BSA to AX was 15:1. The addition of 1 % GDL significantly improved the water-holding capacity, gel strength and thermal stability of the cold-set gels (p < 0.05), and the microstructure was smoother. Low concentrations of Na+ (3 mM) and Ca2+ (6 mM) significantly enhanced the hydrophobic interaction and hydrogen bonding between BSA and AX after acid induction, and the Na+-induced formation of a denser microstructure with a higher water-holding capacity (75.51 %). However, the excess salt ions disrupted the stable network structure of the cold-set gels and reduced their thermal stability and crystalline structure. The results of this study contribute to the understanding of the interactions between BSA and AX induced by GDL and salt ions, and provide a basis for designing hydrogels with different properties.
Collapse
Affiliation(s)
- Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Mengying Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Liyuan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xiaopeng Zhu
- Gansu Wanhe Grass and Livestock Industry Technology Development Co., Ltd., Lanzhou, China
| | - Lin Tong
- Inner Mongolia Horqin Cattle Industry Co., Horqin, China
| |
Collapse
|
4
|
Zhang J, Xu H, Liu H, Wang W, Zheng M, Liu Y, Zhou Y, Li Y, Sui X, Xiao Y. Insight into the improvement mechanism of gel properties of pea protein isolate based on the synergistic effect of cellulose nanocrystals and calcium ions. Food Chem 2024; 447:138975. [PMID: 38489882 DOI: 10.1016/j.foodchem.2024.138975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Here, the influence and potential mechanism by which cellulose nanocrystals (CNC) collaborated with Ca2+ enhancing the heat-induced gelation of pea protein isolate (PPI) were investigated. It was found that the combination of 0.45% CNC and 15 mM Ca2+ synergistically increased the gel strength (from 14.18 to 65.42 g) and viscoelasticity of PPI while decreased the water holding capacity. The improved particle size, turbidity, and thermostability as well as the reduced solubility, crystallinity, and gel porosity were observed in CNC/CaCl2 composite system. CNC fragments bind to specific amino acids in 11S legumin and 7S vicilin mainly through hydrogen bonding and van der Waals forces. Moreover, changes in the protein secondary structure and enhancement of the molecular interaction induced by CNC and Ca2+ could favor the robust gel network. The results will provide a new perspective on the functional regulation of pea protein and the creation of pea protein gel-based food.
Collapse
Affiliation(s)
- Jinglei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huajian Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huixia Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenqi Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yueshuang Li
- Anhui Grain&Oil Product Quality Supervision& Testing Station, Hefei 230031, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Wang Y, Yuan JJ, Zhang YR, Chen X, Wang JL, Chen B, Li K, Bai YH. Unraveling the effect of combined heat and high-pressure homogenization treatment on the improvement of chickpea protein solubility from the perspectives of colloidal state change and structural characteristic modification. Food Chem 2024; 442:138470. [PMID: 38271907 DOI: 10.1016/j.foodchem.2024.138470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Chickpea protein (CP) is a promising plant protein ingredient, but the poor solubility has limited its broad application. In this study, heating followed by high-pressure homogenization (HPH) was used to improve the solubility of CP. The results showed that combined heat (80℃, 30 min) and HPH (80 MPa, 2 cycles) treatment exhibited an additive effect in improving the solubility of CP. This improvement could be attributed to the dissociation and the rearrangement of large insoluble protein aggregates into small-sized soluble protein aggregates, the increased exposure of hydrophobic residues and reactive sulfhydryl groups, the transformation of α-helices to β-sheets and β-turns. Moreover, the 11S subunits of CP could form reinforced disulfide covalent cross-links under heating + HPH, which may provide steric hindrance preventing the reassembly of large protein bodies. This work proposes an interesting approach to enhance the physicochemical properties of CP for tailoring techno-functional plant protein ingredients in food formulations.
Collapse
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China.
| | - Jing-Jing Yuan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Ya-Ru Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia-le Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China.
| |
Collapse
|
6
|
Günal-Köroğlu D, Capanoglu E. Plant protein-based edible films and the effect of phenolic additives. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38504491 DOI: 10.1080/10408398.2024.2328181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The use of protein-based films in food preservation has been investigated as an alternative to synthetic plastics in recent years. Being biodegradable, edible, natural, and upcycling from food waste/by-products are the benefits of protein-based edible films. Their use ensures food safety as an alternative to synthetic plastics, and their film-forming properties can be improved with the addition of bioactive compounds. This review summarizes the studies on the changes in certain quality parameters of plant protein-based films, including mechanical, physicochemical, or morphological properties with the use of different forms of phenolic additives (pure phenolics, phenolic extracts, essential oils) and their application in foods during storage. Phenolics affect protein film matrix formation by acting as plasticizers or cross-linking agents and confer additional health benefits by providing bioactive properties to protein films. On the other hand, the effects were more pronounced with the use of their oxidized forms or higher concentrations. Consequently, phenolic additives have great potential to improve protein films, but further studies are still required to investigate the effects and mechanisms of phenolic addition to the protein-based films.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|