1
|
Yang W, Chen Y, Li K, Jin W, Zhang Y, Liu Y, Ren Z, Li Y, Chen P. Optimization of microwave-expanding pretreatment and microwave-assisted extraction of hemicellulose from bagasse cells with the exploration of the extracting mechanism. Carbohydr Polym 2024; 330:121814. [PMID: 38368097 DOI: 10.1016/j.carbpol.2024.121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Hemicellulose is mainly distributed in the tightly packed S2 layer of the plant cell wall and the middle lamella. This rigid microstructure of wood and interactions among hemicellulose, lignin, and cellulose jointly restrict the separation and transformation of hemicellulose in the wood matrix. To address this issue, a method combined with microwave-expanding pretreatment (MEP) and microwave-assisted extraction (MAE) with a NaOH solution was carried out. We found that the MEP could effectively create new pathways for bagasse cells in mass transferring. More specifically, 195 % of the specific surface area (m2/g) with 193 % of the pores (>50 nm) increased after MEP; the SEM images also confirmed that the microstructure of bagasse was modified. MAE could considerably exfoliate hemicellulose from cellulose fiber and accelerate mass transfer. Additionally, we optimized MEP and MAE by using response surface methodology (RSM). The optimal parameters were 370 K, 3.7 min, 1081 W microwave power, and 9.9 wt% NH4HCO3 consumption for the MEP and 1100 W microwave power, 2.5 wt% NaOH concentration, 34.6 min reaction time for MAE, respectively. Moreover, molecular dynamics (MD) simulation suggests that NaOH could significantly lower the work needed to peel off the xylan chain from cellulose nanofibril.
Collapse
Affiliation(s)
- Wenjin Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yu Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Wen Jin
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Ya Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yuxin Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China.
| | - Zixing Ren
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yuke Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Pan Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
2
|
Gao Q, Zheng J, Van der Meeren P, Zhang B, Fu X, Huang Q. Stabilization and release of thymol in pre-formed V-type starch: A comparative study with traditional method. Carbohydr Polym 2024; 328:121712. [PMID: 38220323 DOI: 10.1016/j.carbpol.2023.121712] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
Recently, pre-formed V-type starch has become popular as a versatile carrier in encapsulation systems of containing starch-guest inclusion complexes (ICs). However, the differences in stabilizing and dissociating guests between ICs prepared by either the traditional method or the pre-formed "empty" helix method have not yet been elucidated. Here, starch-thymol ICs were prepared using the traditional high temperature-water method and the pre-formed method, covering different complexation temperatures and solvents, to compare the loading capacity, crystalline structure, thermal stability, and release properties. The highest content of thymol in ICs prepared by the pre-formed and the traditional method was 74.2 and 65.3 mg/g, respectively. Different from ICs prepared by the traditional method (V7-type crystal), ICs prepared by the pre-formed method mostly exhibited a V6a structure with larger crystallinities and a better short-range ordered structure. ICs prepared at 90 °C were type II complexes and efficiently protected thymol from rapid heat loss. A slow release was observed in both cases: about 45 % and 75 % of thymol were released from ICs prepared by the pre-formed and traditional methods, respectively, after two weeks of storage at 25 °C.
Collapse
Affiliation(s)
- Qing Gao
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiabao Zheng
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Paul Van der Meeren
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|