1
|
Wei W, Cui L, Meng Z. Enhanced 3D printing performance of soybean protein isolate nanoparticle-based O/W Pickering emulsion gels by incorporating different polysaccharides. Int J Biol Macromol 2025; 287:138637. [PMID: 39667466 DOI: 10.1016/j.ijbiomac.2024.138637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
This work investigated the feasibility of employing soybean protein isolate nanoparticles (SPINPs) as emulsifiers and polysaccharides with different charge properties as thickeners to develop oil-in-water (O/W) Pickering emulsion gels 3D printing inks. The impact of non-covalent interactions between SPINPs and various polysaccharides on the microstructure, rheological properties, and 3D printability of emulsion gels was investigated at pH 3 and pH 7, respectively. Results showed that Locust bean gum (LBG) and Konjac gum (KG) stabilized emulsion gels mainly by increasing the viscosity of the aqueous phase. Chitosan (CS) and xanthan gum (XG) improved the system's viscosity while combining with SPINPs via electrostatic interactions. Small amplitude oscillatory shear and large amplitude oscillatory shear test results showed the highest recovery rate (97.45 %) and gel strength of 7-XG, exhibiting good potential for 3D printing. The Lissajous curves revealed the weakest gel structure and larger dimensional printing deviation (27.57 %) of 3-XG. The 3D-printed products of LBG and KG emulsion gels demonstrated smooth and slightly flawed surface texture. The print deformation rate of CS emulsion gels was <5.5 %, which was most suitable for developing 3D printing inks. This study offers valuable insights for creating and designing protein-polysaccharide-based 3D printing inks.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lujie Cui
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Yang Z, Guo Y, Tian T, Chen L, Zhang W, Jiang L, Huang Z, Wang H. Fabrication, characterization, and 3D printing of high-internal phase Pickering emulsion stabilized by heat-treated copra protein and calcium composite. Int J Biol Macromol 2024; 283:137670. [PMID: 39547640 DOI: 10.1016/j.ijbiomac.2024.137670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
HCP-Ca nanoparticles were prepared by incorporating varying concentrations of CaCl2 into heated copra protein (HCP). The results showed a positive correlation between Ca2+ concentration and turbidity, indicating greater HCP aggregation with increasing Ca2+ levels. Microscopy analysis revealed that HCP-Ca nanoparticles had a rough surface morphology. Intermolecular forces such as disulfide bonds, hydrophobic interactions, and hydrogen bonds were key in the conformation of HCP aggregates, with calcium ions enhancing stability by forming salt bridges. HCP-Ca nanoparticle-based high internal phase Pickering emulsions (HIPPEs) were also fabricated using homogenization-centrifugation treatment. The nanoparticles showed contact angles of 87.8° to 98.3°, particle sizes between 80.42 and 80.95 nm, and the HIPPEs had zeta potentials ranging from -23 to -39 mV. The addition of Ca2+ enhanced stability by forming salt bridges, reducing particle size, and altering size distributions. Rheological and texture analysis showed that Ca2+ addition significantly improved the viscoelasticity of HCP-Ca nanoparticle-based HIPPEs, as well as increasing hardness and adhesiveness. Optical microscopy and magnetic imaging techniques revealed details about emulsion formation and oil-water distribution in HCP-Ca nanoparticle-based HIPPEs. The excellent printing stability and structural versatility of HCP-Ca nanoparticle-based HIPPEs allowed the formation of complex 3D structures, offering a valuable approach for fabricating processable and editable HIPPEs from waste materials. This paper aims to develop a food-grade copra protein-based Pickering HIPPE and explore differences in fabrication methods, providing new insights into the design of innovative Pickering stabilizers.
Collapse
Affiliation(s)
- Zhen Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yujie Guo
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tian Tian
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Liang Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou 570228, China
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou 570228, China.
| | - Hong Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Cen S, Meng Z. Advances of plant-based fat analogs in 3D printing: Manufacturing strategies, printabilities, and food applications. Food Res Int 2024; 197:115178. [PMID: 39593389 DOI: 10.1016/j.foodres.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 11/28/2024]
Abstract
Plant-based fat analogs are important alternatives to animal fats proposed in response to the strategy of low fat, low saturation, and sustainable development. Apart from possessing solid or semi-solid fat-analog structural properties, plant-based fat analogs also exhibit ideal rheological properties, making them highly suitable for food 3D printing. By utilizing 3D printing technology, it is feasible to personalize both the external (color and shape) and internal (nutrition and flavor) aspects of food, as well as plant-based fat analogs. Therefore, this review focuses on the research progress of plant-based fat analogs prepared based on 3D printing technology in the custom design of low-fat healthy food. This paper comprehensively reviews the latest advancements in manufacturing plant-based fat analogs from three perspectives: food hydrocolloids, oleogels, and emulsion gels. Then, starting with the printability of plant-based fat analogs, the food 3D printing technology and the printing characteristics of plant-based fat analogs are introduced. Next, strategies to adjust the printing stability of plant-based fat analogs to improve their plasticity and fidelity are discussed. Finally, the application prospects and limitations of plant-based fat analogs prepared by extrusion 3D printing technology in meat products, bakery goods, chocolates, and aerated food are discussed, which provides a reference for expanding the application of 3D printing in the field of fat-reducing and healthy food.
Collapse
Affiliation(s)
- Shaoyi Cen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Gao J, Tan X, Dai H, Wang H, Chen H, Zhang Y. Properties regulation and mechanism on ferritin/chitooligosaccharide dual-compartmental emulsions and its application for co-encapsulation of curcumin and quercetin bioactive compounds. Food Chem 2024; 458:140243. [PMID: 38944931 DOI: 10.1016/j.foodchem.2024.140243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Dual-compartmental emulsions, containing multiple chambers, possess great advantages in co-encapsulation of different cargoes. Herein, we reported a stable dual-compartmental emulsion by regulating the ratio of Marsupenaeus japonicus ferritin (MF) and chitooligosaccharide (COS), enabling efficient co-encapsulation of different compounds. The adsorption behavior of MF/COS complex over droplet interface varied at different ratios, thereby exerting an influence on the emulsion properties. Remarkably, emulsions stabilized by MF/COS complex at a ratio of 2:1 exhibited superior stability, as evidenced by no significant creaming or demulsification during storage or heat treatment. The mechanism is that MF/COS2:1 complex can enhance the formation of thicker interfacial layer and dense continuous phase network structure. Additionally, curcumin and quercetin can be co-encapsulated into the emulsions and their retention rates were significantly improved than those in oils, implying the potential of the resulting dual-compartmental emulsions in co-encapsulation and delivery of bioactive compounds.
Collapse
Affiliation(s)
- Junlu Gao
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiaoyi Tan
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China.
| |
Collapse
|
5
|
Wang F, Li J, Wang Y, Liu H, Yu B, Zhao H, Zhang R, Tao H, Ren X, Cui B. The dispersibility of biphasic stabilized oil-in-water emulsions improved by the interaction between curdlan and soy protein isolate. Food Chem 2024; 457:140101. [PMID: 38901349 DOI: 10.1016/j.foodchem.2024.140101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Curdlan, a natural polysaccharide, exhibits emulsion-stabilizing and viscosity-modifying properties. However, when employed solely in the aqueous phase, curdlan's adhesive nature impedes droplet dispersion, resulting in a gel-like structure with limited applicability. This investigation formulated a biphasic stabilized oil-in-water emulsion by supplementing the oil phase with beeswax and the aqueous phase with curdlan and soy protein isolate (SPI). The addition of SPI transformed the structural characteristics from a gel-like to a mayonnaise-like structure. Maximal electrostatic repulsion was observed at an internal phase volume fraction of 30%, effectively precluding droplet aggregation owing to the absolute zeta potentials surpassing 40 mV. The emulsions displayed shear-thinning rheological behavior, with a higher storage modulus than the loss modulus, indicative of favorable elastic properties. Molecular docking revealed the predominant role of polar amino acids in facilitating hydrogen bond formation. This study provides a template for developing emulsions with biphasic stability and desirable dispersibility.
Collapse
Affiliation(s)
- Fuying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuxiao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, China
| | - Han Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Rentang Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xin Ren
- School of Food and Health, China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
6
|
Tang J, Yao D, Xia S, Cheong L, Tu M. Recent progress in plant-based proteins: From extraction and modification methods to applications in the food industry. Food Chem X 2024; 23:101540. [PMID: 39007110 PMCID: PMC11239452 DOI: 10.1016/j.fochx.2024.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Plant proteins can meet consumers' demand for healthy and sustainable alternatives to animal proteins. It has been reported to possess numerous health benefits and is widely used in the food industry. However, conventional extraction methods are time-consuming, energy-intensive, as well as environmentally unfriendly. Plant proteins are also limited in application due to off-flavors, allergies, and anti-nutritional factors. Therefore, this paper discusses the challenges and limitations of conventional extraction processes. The current advances in green extraction technologies are also summarized. In addition, methods to improve the nutritional value, bioactivity, functional and organoleptic properties of plant proteins, and strategies to reduce their allergenicity are mentioned. Finally, examples of applications of plant proteins in the food industry are presented. This review aims to stimulate thinking and generate new ideas for future research. It will also provide new ideas and broad perspectives for the application of plant proteins in the food industry.
Collapse
Affiliation(s)
- Jiayue Tang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Dan Yao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Shuaibo Xia
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Lingzhi Cheong
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, 3010, Australia
| | - Maolin Tu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Daikhi S, Hammani S, Guerziz S, Alsaeedi H, Sayegh S, Bechlany M, Barhoum A. Urchin-like WO 3 Particles Form Honeycomb-like Structured PLA/WO 3 Nanocomposites with Enhanced Crystallinity, Thermal Stability, Rheological, and UV-Blocking and Antifungal Activity. Polymers (Basel) 2024; 16:2702. [PMID: 39408414 PMCID: PMC11479109 DOI: 10.3390/polym16192702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
The development of poly(lactic acid) (PLA) nanocomposites incorporating urchin-like WO3 particles through a cost-effective solution-casting method has led to significant enhancements in structural, thermal, optical, and rheological properties. The incorporation of these WO3 particles up to 7 wt% resulted in the formation of an irregular honeycomb-like morphology with broad pore sizes ranging from 14.1 to 24.7 µm, as confirmed by SEM and EDX analysis. The urchin-like WO3 particles acted as effective nucleating agents, increasing the crystallinity of PLA from 40% to 50% and achieving an impressive overall crystallinity rate of 97%. Differential scanning calorimetry (DSC) revealed an 11 K reduction in the crystalline phase transition temperature while maintaining stable melting (Tm) and glass transition (Tg) temperatures. Thermal analysis indicated a significant decrease in the onset of degradation and maximum thermal stability (Tmax), with a reduction of 21 K due to the incorporation of the WO3 particles. Optical measurements showed enhancement of UV-blocking properties from 9% to 55% with the WO3 particle loading. Rheological tests demonstrated substantial improvements in viscoelastic properties, including a remarkable 30-fold increase in storage modulus, suggesting enhanced gel formation. Although the nanocomposites showed minimal antibacterial activity against Escherichia coli and Staphylococcus aureus, they exhibited significant antifungal activity against Candida albicans. These results underscore the potential of the PLA/WO3 nanocomposites for advanced material applications, particularly where enhanced mechanical, thermal, optical, and antifungal performance is required.
Collapse
Affiliation(s)
- Sihem Daikhi
- Laboratoire de Chimie Physique Moléculaire et Macromoléculaire, Faculté de Science, Université de Blida 1, Blida 09000, Algeria; (S.D.); (S.G.)
| | - Salim Hammani
- Laboratoire de Chimie Physique Moléculaire et Macromoléculaire, Faculté de Science, Université de Blida 1, Blida 09000, Algeria; (S.D.); (S.G.)
| | - Soumia Guerziz
- Laboratoire de Chimie Physique Moléculaire et Macromoléculaire, Faculté de Science, Université de Blida 1, Blida 09000, Algeria; (S.D.); (S.G.)
| | - Huda Alsaeedi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Syreina Sayegh
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, F-34095 Montpellier, France; (S.S.); (M.B.)
| | - Mikhael Bechlany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, F-34095 Montpellier, France; (S.S.); (M.B.)
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 4034572, Egypt
| |
Collapse
|
8
|
Jangid AK, Noh KM, Kim S, Kim K. Engineered inulin-based hybrid biomaterials for augmented immunomodulatory responses. Carbohydr Polym 2024; 340:122311. [PMID: 38858027 DOI: 10.1016/j.carbpol.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
9
|
Su X, Lai H, Chen S, Chen H, Wang X, Shen B, Yue P. Raspberry-liked Pickering emulsions based inulin microparticles for enhanced antibacterial performance of essential oils. Int J Biol Macromol 2024; 271:132224. [PMID: 38821807 DOI: 10.1016/j.ijbiomac.2024.132224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Pickering emulsions seem to be an effective strategy for encapsulation and stabilization of essential oils. In this work, a novel raspberry-liked Pickering emulsion (RPE) loading Mosla chinensis 'Jiangxiangru' essential oil (MJO) was successfully engineered by using ethyl lauroyl arginate (ELA) decorated nanosilica (ELA-NS) as particles emulsifier. And the ELA-NS-stabilized MJO Pickering emulsion (MJO-RPE) was further prepared into inulin-based microparticles (MJO-RPE-IMP) by spray-drying, using inulin as matrix formers. The concentration of ELA-NS could affect the formation and stabilization of MJO-RPE, and the colloidal behavior of ELA-NS could be modulated at the interfaces with concentration of ELA, thus providing unique role on stabilization of MJO-RPE. The results indicated that the MJO-RPE stabilized ELA-NS with 2 % NS modified by 0.1 % ELA had long-term stability. MJO-RPE exhibited a raspberry-liked morphology on the surface, attributed to ELA-NS covered in the droplet surface. The inulin-based matrix formers could effectively prevent MJO-RPE from agglomeration or destruction during spray-drying, and 100 % concentration of inulin based microparticles formed large composite particles with high loading capacity (98.54 ± 1.11 %) and exhibited superior thermal stability and redispersibility of MJO-RPE. The MJO-RPE exhibited strong antibacterial efficacy against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa), owing to the adhesion to bacterial membrane dependent on the raspberry-liked surface of MJO-RPE, whose minimum inhibitory concentration (MIC) of the above three bacteria were (0.3, 0.45, and 1.2 μL/mL), respectively, lower than those (0.45, 0.6 and 1.2 μL/mL) of MJO. Therefore, the Pickering emulsion composite microparticles seemed to be a promising strategy for enhancing the stability and antibacterial activity of MJO.
Collapse
Affiliation(s)
- Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huazhang Lai
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuiyan Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
10
|
Li Y, Chen M, Ding Y, Li Y, Guo M, Zhang Y. A Pickering emulsion stabilized by Chitosan-g-Poly(N-vinylcaprolactam) microgels: Interface formation, stability and stimuli-responsiveness. Carbohydr Polym 2024; 332:121948. [PMID: 38431386 DOI: 10.1016/j.carbpol.2024.121948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Pickering emulsions stabilized by solid particles are more stable and environmentally friendly compared to traditional surfactants. Herein, a series of Chitosan-g-Poly(N-vinylcaprolactam) (CS-g-PNVCL) microgel particles were synthesized via a free radical surfactant-free emulsion copolymerization and the obtained particles were used to stabilize Pickering emulsions. It is found that the ratio (CS/PNVCL = 60 wt%) was optimal to produce Pickering emulsions. The microstructures of Pickering emulsions can maintain for 60 days at room temperature and this long-term stability is attributed to the CS-g-PNVCL microgel particles adsorbed at the oil-water interface. The Pickering emulsions displayed thermo-responsive characteristics when exposed to environmental stimuli. The emulsions became destabilized with an increase in pH and temperature. The droplets turned unstable and irregular due to excessive NaCl concentration, caused by electrostatic repulsion between the microgel particles. This study presents a novel way to form smart and uniform Pickering emulsions with the application potential in food, cosmetics, and drug delivery, etc.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Mengting Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Yanjun Ding
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Yanke Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Mingming Guo
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Yichuan Zhang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| |
Collapse
|