1
|
Zabielska-Kaczorowska MA, Braczko A, Pelikant-Malecka I, Slominska EM, Smolenski RT. Hidden Pool of Cardiac Adenine Nucleotides That Controls Adenosine Production. Pharmaceuticals (Basel) 2023; 16:ph16040599. [PMID: 37111356 PMCID: PMC10142527 DOI: 10.3390/ph16040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Myocardial ischemic adenosine production decreases in subsequent events that may blunt its protective functions. To test the relation between total or mitochondrial cardiac adenine nucleotide pool (TAN) on the energy status with adenosine production, Langendorff perfused rat hearts were subjected to three protocols: 1 min ischemia at 40 min, 10 min ischemia at 50 min, and 1 min ischemia at 85 min in Group I; additional infusion of adenosine (30 µM) for 15 min after 10 min ischemia in Group I-Ado, and 1 min ischemia at 40 and 85 min in the controls (Group No I). A 31P NMR and an HPLC were used for the analysis of nucleotide and catabolite concentrations in the heart and coronary effluent. Cardiac adenosine production in Group I measured after 1 min ischemia at 85 min decreased to less than 15% of that at 40 min in Group I, accompanied by a decrease in cardiac ATP and TAN to 65% of the initial results. Adenosine production at 85 min was restored to 45% of that at 40 min in Group I-Ado, accompanied by a rebound of ATP and TAN by 10% vs. Group I. Mitochondrial TAN and free AMP concentrations paralleled that of total cardiac TAN. Changes in energy equilibrium or mitochondrial function were minor. This study highlights that only a fraction of the cardiac adenine nucleotide pool is available for adenosine production, but further studies are necessary to clarify its nature.
Collapse
Affiliation(s)
- Magdalena A Zabielska-Kaczorowska
- Department of Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Iwona Pelikant-Malecka
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Heart Science Centre, Imperial College at Harefield Hospital, Harefield UB9 6JH, UK
| |
Collapse
|
2
|
Rannou F, Scotet V, Marcorelles P, Monnoyer R, Le Maréchal C. Effects of AMPD1 common mutation on the metabolic-chronotropic relationship: Insights from patients with myoadenylate deaminase deficiency. PLoS One 2017; 12:e0187266. [PMID: 29095874 PMCID: PMC5667816 DOI: 10.1371/journal.pone.0187266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Current evidence indicates that the common AMPD1 gene variant is associated with improved survival in patients with advanced heart failure. Whilst adenosine has been recognized to mediate the cardioprotective effect of C34T AMPD1, the precise pathophysiologic mechanism involved remains undefined to date. To address this issue, we used cardio-pulmonary exercise testing data (CPX) from subjects with myoadenylate deaminase (MAD) defects. METHODS From 2009 to 2013, all the patients referred in our laboratory to perform a metabolic exercise testing, i.e. a CPX with measurements of muscle metabolites in plasma during and after exercise testing, were prospectively enrolled. Subjects that also underwent an open muscle biopsy for diagnosis purpose were finally included. The metabolic-chronotropic response was assessed by calculating the slope of the linear relationship between the percent heart rate reserve and the percent metabolic reserve throughout exercise. MAD activity was measured using the Fishbein's technique in muscle biopsy sample. The common AMPD1 mutation was genotyped and the AMPD1 gene was sequenced to screen rare variants from blood DNA. RESULTS Sixty-seven patients were included in the study; 5 had complete MAD deficiency, 11 had partial MAD deficiency, and 51 had normal MAD activity. Compared with normal MAD activity subjects, MAD deficient subjects appeared to have a lower-than-expected metabolic-chronotopic response during exercise. The metabolic-chronotropic relationship is more closely correlated with MAD activity in skeletal muscle (Rs = 0.57, p = 5.93E-7, Spearman correlation) than the presence of the common AMPD1 gene variant (Rs = 0.34, p = 0.005). Age-predicted O2 pulse ratio is significantly increased in MAD deficient subjects, indicating a greater efficiency of the cardiovascular system to deliver O2 (p < 0.01, Scheffé's post hoc test). CONCLUSION The metabolic-chronotropic response is decreased in skeletal muscle MAD deficiency, suggesting a biological mechanism by which AMPD1 gene exerts cardiac effect.
Collapse
Affiliation(s)
- Fabrice Rannou
- Physiology Department-EA 4324, CHRU Cavale Blanche, Brest, France
- * E-mail:
| | - Virginie Scotet
- Institut National de la Santé et de la Recherche Médicale - UMR 1078, Brest, France
| | | | - Roxane Monnoyer
- Institut National de la Santé et de la Recherche Médicale - UMR 1078, Brest, France
| | - Cédric Le Maréchal
- Institut National de la Santé et de la Recherche Médicale - UMR 1078, Brest, France
| |
Collapse
|
3
|
Feng AF, Liu ZH, Zhou SL, Zhao SY, Zhu YX, Wang HX. Effects of AMPD1 gene C34T polymorphism on cardiac index, blood pressure and prognosis in patients with cardiovascular diseases: a meta-analysis. BMC Cardiovasc Disord 2017; 17:174. [PMID: 28673246 PMCID: PMC5496365 DOI: 10.1186/s12872-017-0608-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/22/2017] [Indexed: 04/21/2023] Open
Abstract
Background The meta-analysis was aimed to evaluate the effects of AMPD1 gene C34T polymorphism on cardiac function indexes, blood pressure and prognosis in patients with cardiovascular diseases (CVD). Methods Eligible studies were retrieved through a comprehensive search of electronic databases and manual search. Then the high-quality studies met the rigorous inclusion and exclusion criteria, as well as related to the subject was selected for the study. Comprehensive data analyses were conducted using STATA software 12.0. Results The study results revealed that CVD patients with CT + TT genotype of AMPD1 C34T polymorphism presented elevated left ventricular ejection fraction (LVEF) (%) and reduced left ventricular end diastolic dimension (LVEDD) (mm) as compared with CC genotype, moreover, the subgroup analysis found that the LVEF (%) was markedly higher in heart failure (HF) patients carrying CT + TT genotype than CC genotype. Besides, the systolic blood pressure (SBP) (mmHg) in CVD patients with CT + TT genotype was obviously decreased in contrast with the CC genotype. Patients suffered from HF with different genotypes (CT + TT and CC) of AMPD1 C34T polymorphism exhibited no significant differences in total survival rate and cardiac survival rate. Conclusions Our current meta-analysis indicated that the T allele of AMPD1 gene C34T polymorphism may be correlated with LVEF, LVEDD and SBP, which plays a protective role in the cardiac functions and blood pressure in CVD patients, but had no effects on total survival rate and cardiac survival rate for HF.
Collapse
Affiliation(s)
- Ai-Fang Feng
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Zhong-Hui Liu
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Shu-Long Zhou
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Shi-Yuan Zhao
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Yan-Xin Zhu
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Huai-Xin Wang
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China.
| |
Collapse
|
4
|
Mottet F, Vardeny O, de Denus S. Pharmacogenomics of heart failure: a systematic review. Pharmacogenomics 2016; 17:1817-1858. [PMID: 27813451 DOI: 10.2217/pgs-2016-0118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Heart failure (HF) and multiple HF-related phenotypes are heritable. Genes implicated in the HF pathophysiology would be expected to influence the response to treatment. METHODS We conducted a series of systematic literature searches on the pharmacogenetics of HF therapy to assess the current knowledge on this field. RESULTS Existing data related to HF pharmacogenomics are still limited. The ADRB1 gene is a likely candidate to predict response to β-blockers. Moreover, the cytochrome P450 2D6 coding gene (CYP2D6) clearly affects the pharmacokinetics of metoprolol, although the clinical impact of this association remains to be established. CONCLUSION Given the rising prevalence of HF and related costs, a more personalized use of HF drugs could have a remarkable benefit for patients, caregivers and healthcare systems.
Collapse
Affiliation(s)
- Fannie Mottet
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada.,Montreal Heart Institute, Montreal, Canada
| | - Orly Vardeny
- Associate Professor of Pharmacy & Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Simon de Denus
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada.,Montreal Heart Institute, Montreal, Canada
| |
Collapse
|
5
|
Guo M, Guo G, Ji X. Genetic polymorphisms associated with heart failure: A literature review. J Int Med Res 2016; 44:15-29. [PMID: 26769713 PMCID: PMC5536573 DOI: 10.1177/0300060515604755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
Objective To review possible associations reported between genetic variants and the risk, therapeutic response and prognosis of heart failure. Methods Electronic databases (PubMed, Web of Science and CNKI) were systematically searched for relevant papers, published between January 1995 and February 2015. Results Eighty-two articles covering 29 genes and 39 polymorphisms were identified. Conclusion Genetic association studies of heart failure have been highly controversial. There may be interaction or synergism of several genetic variants that together result in the ultimate pathological phenotype for heart failure.
Collapse
Affiliation(s)
- Mengqi Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Guanlun Guo
- Hubei Key Laboratory of Advanced Technology of Automotive Components, School of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Xiaoping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
6
|
Hu J, Yu P, Ding X, Xu M, Guo B, Xu Y. Genetic polymorphisms of the AMPD1 gene and their correlations with IMP contents in Fast Partridge and Lingshan chickens. Gene 2015; 574:204-9. [PMID: 26275943 DOI: 10.1016/j.gene.2015.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 11/15/2022]
Abstract
The object of this study was to evaluate associations between the adenosine monophosphate deaminase 1 (AMPD1) gene polymorphisms and inosine monophosphate acid (IMP) contents of chicken to provide a molecular marker for breeding. Three single nucleotide polymorphisms (SNPs), g.4064G/A, g.5573A/G and g.6805G/A were detected in exons IV, VI, and VIII of the AMPD1 gene in Fast Partridge and Lingshan chickens, respectively. All were purine conversion and caused no alteration in amino acid sequence. Statistical analysis revealed that Lingshan chicken with the homozygous genotype AA at position 4064 and 6805 had a significantly greater IMP content than those with the GG genotype (P<0.05). Fast Partridge chicken with the genotype GG at position 6805 had a significantly greater IMP content compared with those with the AA genotype (P<0.05). In conclusion, the polymorphism at g.6805A/G was correlated with IMP content (P<0.05) in both Fast Partridge and Lingshan chickens. The results in our study suggest that SNP 6805A/G can be used as a possible candidate marker of IMP content of chicken.
Collapse
Affiliation(s)
- Jin Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Ping Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xiaoling Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Minglong Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Baoping Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yinxue Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
7
|
AMPD1 gene mutations are associated with obesity and diabetes in Polish patients with cardiovascular diseases. J Appl Genet 2010; 52:67-76. [PMID: 21108053 PMCID: PMC3026686 DOI: 10.1007/s13353-010-0009-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 07/02/2010] [Accepted: 07/27/2010] [Indexed: 11/24/2022]
Abstract
Previous studies showed an association of the common functional polymorphism (C34T, Gln12Stop) in the adenosine monophosphate deaminase-1 (AMPD1) gene with survival in heart failure (HF) and/or coronary artery disease (CAD). The aim of the study was to search for other mutations in selected regions of the AMPD1 gene in Polish CAD and HF patients, and to analyze their associations with obesity and diabetes. Exons 2, 3, 5, and 7 of AMPD1 were scanned for mutations in 97 patients with CAD without HF (CAD+ HF−), 104 patients with HF (HF+), and 200 newborns from North-Western Poland using denaturing high-performance liquid chromatography (DHPLC), polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), and direct sequencing. Frequencies of AMPD1 C34T mutation, as well as novel A99G, G512A, IVS4-6delT, and C784T sequence alterations, were similar in the three groups, but 860T mutated allele was less frequent in the combined CAD+ HF− and HF+ groups than in the controls (1.7% vs. 4.3%, p = 0.040). Heterozygous 34CT genotype was associated with lower (odds ratio [OR] = 0.32, 95% confidence interval [CI] = 0.13–0.81) and 860AT with higher (OR = 13.7, 95%CI = 1.6–118) prevalence of diabetes or hyperglycemia in relation to wild-type homozygotes. Abdominal obesity was more frequent in 860AT patients than in wild-type homozygotes and 34CT heterozygotes (86% vs. 40% vs. 29%, p < 0.05). Nine genes containing polymorphisms linked with AMPD1 C34T mutation were found in the HapMap database. AMPD1 C34T nonsense mutation is associated with reduced prevalence of diabetes and obesity in patients with CAD or HF, but A860T substitution seems to exert opposite metabolic effects and should always be accounted for in the studies of the AMPD1 genotype.
Collapse
|
8
|
Safranow K, Czyzycka E, Binczak‐Kuleta A, Rzeuski R, Skowronek J, Wojtarowicz A, Jakubowska K, Olszewska M, Loniewska B, Kaliszczak R, Kornacewicz‐Jach Z, Ciechanowicz A, Chlubek D. Association of C34TAMPD1gene polymorphism with features of metabolic syndrome in patients with coronary artery disease or heart failure. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:102-12. [DOI: 10.1080/00365510802430964] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Taegtmeyer AB, Breen JB, Rogers P, Johnson PH, Smith J, Smolenski RT, Banner NR, Yacoub MH, Barton PJ. Effect of adenosine monophosphate deaminase-1 C34T allele on the requirement for donor inotropic support and on the incidence of early graft dysfunction after cardiac transplantation. Am J Cardiol 2009; 103:1457-62. [PMID: 19427446 DOI: 10.1016/j.amjcard.2009.01.360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 11/26/2022]
Abstract
The C34T T allele of the adenosine monophosphate deaminase-1 (AMPD1) gene has been associated with improved outcome in patients with cardiac dysfunction. We hypothesized that possession of this allele by donor hearts plays a role in the outcome of cardiac transplantation; 262 cardiac donors and 190 of their recipients were studied. AMPD1 C34T genotype was determined using 5' exonuclease chemistry. Requirement for inotropic agents before organ donation, 1-year post-transplantation survival, cause of death, and factors known to affect survival after transplantation were also studied. Multiple regression models for factors affecting survival were constructed. A significant yearly increase in frequency of the T allele in donors was noted (0.06 to 0.18 from 1994 to 1999). Donors with the CT or TT genotype required less inotropic support than those with the CC genotype (mean number of inotropes per donor with CT or TT genotype 0.27 compared with 0.47 per donor with CC genotype, n = 206, p = 0.03). Recipients of T-allele-carrying organs showed worse 1-year survival after transplantation (59% vs 79%, p <0.001). Excess deaths in these patients was due to early graft dysfunction (odds ratio for early graft dysfunction 6.6, 95% confidence interval 2 to 21.6, p = 0.0001). Multivariate analysis showed donor AMPD1 genotype, recipient age, and pretransplantation anemia to independently affect 1-year post-transplantation survival (adjusted hazard ratios 3.7, 1.06, and 2.6, respectively). In conclusion, possession of the AMPD1 T allele is associated with decreased inotropic requirements before heart donation. The incidence of early graft dysfunction, however, was significantly higher in recipients who received AMPD1 T-allele-possessing organs resulting in worse 1-year survival.
Collapse
|
10
|
Wheeler MT, Ho M, Knowles JW, Pavlovic A, Ashley EA. Pharmacogenetics of heart failure: evidence, opportunities, and challenges for cardiovascular pharmacogenomics. J Cardiovasc Transl Res 2008; 1:25-36. [PMID: 20559955 DOI: 10.1007/s12265-007-9007-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 12/26/2007] [Indexed: 11/24/2022]
Abstract
Heart failure is a significant medical problem affecting more than five million people in the USA alone. Although clinical trials of pharmacological agents have demonstrated significant reductions in the relative risk of mortality across populations, absolute mortality remains high. In addition, individual variation in response is great. Some of this variation may be explained by genetic polymorphism. In this paper, we review the key studies to date in heart failure pharmacogenetics, setting this against a background of recent progress in the genetics of warfarin metabolism. Several polymorphisms that have supporting molecular and clinical data in the heart failure literature are reviewed, among them the beta1-adrenergic receptor variant Arg389Gly and the angiotensin converting enzyme gene insertion/deletion polymorphism. These variants and others are responsible for a fraction of the total variation seen in the treatment response to heart failure. With the dawn of the genomic age, further pharmacogenetic and new pharmacogenomic studies will advance our ability to tailor the treatment of heart failure.
Collapse
Affiliation(s)
- Matthew T Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, 300 Pasteur Drive, Falk CVRC MC 5406, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
11
|
Palmer BR, Frampton CM, Richards AM, Cameron VA. AMPD1 gene polymorphism and survival in patients with stable congestive heart failure. Am Heart J 2007; 153:e13. [PMID: 17452134 DOI: 10.1016/j.ahj.2007.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
de Groote P, Lamblin N, Helbecque N, Mouquet F, Hermant X, Amouyel P, Dallongeville J, Bauters C. The impact of the AMPD1 gene polymorphism on exercise capacity, other prognostic parameters, and survival in patients with stable congestive heart failure: a study in 686 consecutive patients. Am Heart J 2006; 152:736-41. [PMID: 16996850 DOI: 10.1016/j.ahj.2006.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/03/2006] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous studies have demonstrated that the adenosine monophosphate deaminase 1 (AMPD1) C34T polymorphism may be associated with survival in cardiac populations with a protective effect of the T allele. However, these studies included limited number of patients with few cardiovascular events. METHODS We prospectively analyzed the impact of the C34T polymorphism of the AMPD1 gene in 686 unrelated white patients with stable congestive heart failure related to left ventricular systolic dysfunction. Patients underwent echocardiography, radionuclide angiography, and a cardiopulmonary exercise test. Blood samples were drawn for standard and hormonal determinations and for genetic analysis. RESULTS There were 517 (75%) CC homozygotes, 155 (23%) CT heterozygotes, and 14 (2%) TT mutated homozygotes. We did not demonstrate any impact of this polymorphism on clinical, biologic, echocardiographic, radionuclide, and exercise parameters in the whole population and in ischemic and nonischemic subgroups of patients. During a median follow-up period of 3 years, there were 145 cardiac-related deaths and 6 urgent transplantations. There was no impact of this polymorphism on survival. CONCLUSIONS In our population, we did not demonstrate any effect of the C34T polymorphism of the AMPD1 gene on major congestive heart failure parameters and on survival.
Collapse
Affiliation(s)
- Pascal de Groote
- Service de Cardiologie C, Hôpital Cardiologique, Centre Hospitalier Régional et Universitaire de Lille, Boul Prof J Leclercq, 59037 Lille cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|