Ceridon ML, Morris NR, Hulsebus ML, Olson TP, Lalande S, Johnson BD. Influence of bronchial blood flow and conductance on pulmonary function in stable systolic heart failure.
Respir Physiol Neurobiol 2011;
177:256-64. [PMID:
21545852 DOI:
10.1016/j.resp.2011.04.020]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND
The aim of this study was to determine the relationship between airway blood flow (Q(aw)), airway conductance (G(f-aw)) and pulmonary function in patients with stable HF.
METHODS
12 controls (CTRL: age=63±9 years, FVC=98±15%pred, LVEF=61±6%) (all data presented as mean±SD), 16 patients with mild HF (HF-A, NYHA I-II: age=64±9 years, FVC=90±17%pred, LVEF=28±6%), and 14 patients with moderate/severe HF (HF-B, NYHA III-IV: age=65±6 years, FVC=84±12%pred, LVEF=26±6%) were studied. Q(aw) was assessed using soluble gas measurements; perfusion pressure across airway bed (ΔP(aw)) was estimated from systemic and pulmonary pressure measurements; G(f-aw) was calculated as Q(aw)/ΔP(aw); PF was assessed by spirometry.
RESULTS
While Q˙(aw) was not significantly different between CTRL (61.3±17.9 μL min(-1)mL(-1)), HF-A (70.1±26.9 μL min(-1)mL(-1)) and HF-B (56.2±14.9 μL min(-1)mL(-1)) groups, G(f-aw), was elevated in HF-A (1.1±0.4 μL min(-1)mL(-1)mm Hg(-1), p<0.03) and tended to be elevated in HF-B (1.2±0.6 μL min(-1)mL(-1)mm Hg(-1), p=0.07) when compared to CTRL (0.8±0.3 μL min(-1)mL(-1)mm Hg(-1)). Significant positive correlations were found between G(f-aw) and RV/TLC for HF-A (r=0.63, p<0.02) and HF-B (r=0.58, p<0.05).
CONCLUSIONS
These results support the hypothesis that increased bronchial conductance and bronchial congestion may be related to greater small airway obstruction and as such may play a role in the PF abnormalities and symptoms of congestion commonly observed in HF patients.
Collapse