1
|
Yu Q, Barndt RJ, Shen Y, Sallam K, Tang Y, Chan SY, Wu JC, Liu Q, Wu H. Mitigation of Stress-induced Structural Remodeling and Functional Deficiency in iPSC-CMs with PLN R9C Mutation by Promoting Autophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589921. [PMID: 38659742 PMCID: PMC11042320 DOI: 10.1101/2024.04.17.589921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Phospholamban (PLN) is a key regulator of cardiac function connecting adrenergic signaling and calcium homeostasis. The R9C mutation of PLN is known to cause early onset dilated cardiomyopathy (DCM) and premature death, yet the detailed mechanisms underlie the pathologic remodeling process are not well defined in human cardiomyocytes. The aim of this study is to unravel the role of PLN R9C in DCM and identify potential therapeutic targets. Methods PLN R9C knock-in (KI) and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated and comprehensively examined for their expression profile, contractile function, and cellular signaling under both baseline conditions and following functional challenges. Results PLN R9C KI iPSC-CMs exhibited near-normal morphology and calcium handling, slightly increased contractility, and an attenuated response to β-adrenergic activation compared to wild-type (WT) cells. However, treatment with a maturation medium (MM) has induced fundamentally different remodeling in the two groups: while it improved the structural integrity and functional performance of WT cells, the same treatment result in sarcomere disarrangement, calcium handling deficiency, and further disrupted adrenergic signaling in PLN R9C KI cells. To understand the mechanism, transcriptomic analysis showed the enrichment of protein homeostasis signaling pathways specifically in PLN R9C KI cells in response to the MM treatment and increased contractile demands. Further studies also indicated elevated ROS levels, interrupted autophagic flux, and increased pentamer PLN aggregation in functionally challenged KI cells. These results were further confirmed in patient-specific iPSC-CM models, suggesting that functional stresses exacerbate the deficiencies in PLN R9C cells through disrupting protein homeostasis. Indeed, treating stressed patient cells with autophagy-accelerating reagents, such as metformin and rapamycin, has restored autophagic flux, mitigated sarcomere disarrangement, and partially rescued β-adrenergic signaling and cardiac function. Conclusions PLN R9C leads to a mild increase of calcium recycling and contractility. Functional challenges further enhanced contractile and proteostasis stress, leading to autophagic overload, structural remodeling, and functional deficiencies in PLN R9C cardiomyocytes. Activation of autophagy signaling partially rescues these effects, revealing a potential therapeutic target for DCM patients with the PLN R9C mutation. Graphic abstracts A graphic abstract is available for this article.
Collapse
|
2
|
Ceholski DK, Turnbull IC, Kong CW, Koplev S, Mayourian J, Gorski PA, Stillitano F, Skodras AA, Nonnenmacher M, Cohen N, Björkegren JLM, Stroik DR, Cornea RL, Thomas DD, Li RA, Costa KD, Hajjar RJ. Functional and transcriptomic insights into pathogenesis of R9C phospholamban mutation using human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2018; 119:147-154. [PMID: 29752948 DOI: 10.1016/j.yjmcc.2018.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
Dilated cardiomyopathy (DCM) can be caused by mutations in the cardiac protein phospholamban (PLN). We used CRISPR/Cas9 to insert the R9C PLN mutation at its endogenous locus into a human induced pluripotent stem cell (hiPSC) line from an individual with no cardiovascular disease. R9C PLN hiPSC-CMs display a blunted β-agonist response and defective calcium handling. In 3D human engineered cardiac tissues (hECTs), a blunted lusitropic response to β-adrenergic stimulation was observed with R9C PLN. hiPSC-CMs harboring the R9C PLN mutation showed activation of a hypertrophic phenotype, as evidenced by expression of hypertrophic markers and increased cell size and capacitance of cardiomyocytes. RNA-seq suggests that R9C PLN results in an altered metabolic state and profibrotic signaling, which was confirmed by gene expression analysis and picrosirius staining of R9C PLN hECTs. The expression of several miRNAs involved in fibrosis, hypertrophy, and cardiac metabolism were also perturbed in R9C PLN hiPSC-CMs. This study contributes to better understanding of the pathogenic mechanisms of the hereditary R9C PLN mutation in the context of human cardiomyocytes.
Collapse
Affiliation(s)
- Delaine K Ceholski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Chi-Wing Kong
- Department of Paediatrics and Adolescent Medicine, Hong Kong University, Pokfulam, Hong Kong
| | - Simon Koplev
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Mayourian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Przemek A Gorski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Francesca Stillitano
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Angelos A Skodras
- Microscopy Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mathieu Nonnenmacher
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ninette Cohen
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johan L M Björkegren
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel R Stroik
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ronald A Li
- Department of Paediatrics and Adolescent Medicine, Hong Kong University, Pokfulam, Hong Kong; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Solna SE-171, Sweden
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|