1
|
Mody R, Nee Sheth AB, Dash D, Mody B, Agrawal A, Monga IS, Rastogi L, Munjal A. Device therapies for heart failure with reduced ejection fraction: a new era. Front Cardiovasc Med 2024; 11:1388232. [PMID: 39494238 PMCID: PMC11527719 DOI: 10.3389/fcvm.2024.1388232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/02/2024] [Indexed: 11/05/2024] Open
Abstract
Even with significant advancements in the treatment modalities for patients with heart failure (HF), the rates of morbidity and mortality associated with HF are still high. Various therapeutic interventions, including cardiac resynchronization therapy, Implantable Cardiovascular-Defibrillators, and left ventricular assist devices, are used for HF management. Currently, more research and developments are required to identify different treatment modalities to reduce hospitalization rates and improve the quality of life of patients with HF. In relation to this, various non-valvular catheter-based therapies have been recently developed for managing chronic HF. These devices target the pathophysiological processes involved in HF development including neurohumoral activation, congestion, and left ventricular remodeling. The present review article aimed to discuss the major transcatheter devices used in managing chronic HF. The rationale and current clinical developmental stages of these interventions will also be addressed in this review.
Collapse
Affiliation(s)
- Rohit Mody
- Department of Cardiology, Mody Harvard Cardiac Institute & Research Centre, Krishna Super Specialty Hospital, Bathinda, India
| | - Abha Bajaj Nee Sheth
- Department of Anatomy, Dr Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, India
| | - Debabrata Dash
- Department of Cardiology, Aster Hospital, Dubai, United Arab Emirates
| | - Bhavya Mody
- Department of Medicine, Kasturba Medical College, Manipal, India
| | - Ankit Agrawal
- Department of Cardiology, Cleveland Clinic, Cleveland, OH, United States
| | | | - Lakshay Rastogi
- Department of Medicine, Kasturba Medical College, Manipal, India
| | - Amit Munjal
- Department of Cardiology, Dr Asha Memorial Multispecialty Hospital, Fatehabad, India
| |
Collapse
|
2
|
Spring AM, Marsela E, Jorde UP. Early Experience With Devices That Reduce Kidney Vascular Afterload From the Veins. J Card Fail 2024; 30:961-963. [PMID: 38447635 DOI: 10.1016/j.cardfail.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Alexander M Spring
- From the Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Enklajd Marsela
- From the Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Ulrich P Jorde
- From the Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
3
|
Chouairi F, Levin A, Biegus J, Fudim M. Emerging devices for heart failure management. Prog Cardiovasc Dis 2024; 82:125-134. [PMID: 38242194 DOI: 10.1016/j.pcad.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
There have been significant advances in the treatment of heart failure (HF) in recent years, driven by significant strides in guideline-directed medical therapy (GDMT). Despite this, HF is still associated with high levels of morbidity and mortality, and most patients do not receive optimal medical therapy. In conjunction with the improvement of GDMT, novel device therapies have been developed to better treat HF. These devices include technology capable of remotely monitoring HF physiology, devices that modulate the autonomic nervous system, and those that structurally change the heart with the ultimate aim of addressing the root causes of HF physiology As these device therapies gradually integrate into the fabric of HF patient care, it becomes increasingly important for modern cardiologists to become familiar with them. Hence, the objective of this review is to shed light on currently emerging devices for the treatment of HF.
Collapse
Affiliation(s)
- Fouad Chouairi
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Allison Levin
- Division of Cardiology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Marat Fudim
- Division of Cardiology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC, USA; Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland; Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
4
|
Khan MS, Paracha AA, Biegus J, Espriella RDL, Núñez J, Santos-Gallego CG, Yaranov D, Fudim M. Preload Reduction Therapies in Heart Failure. Heart Fail Clin 2024; 20:71-81. [PMID: 37953023 DOI: 10.1016/j.hfc.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Preload reserve represents an important concept in the normal physiologic responses of the body to meet the changing metabolic demands. The recruitment of preload in healthy patients leads to an increase in effective circulating blood volume with a concomitant increase in cardiac output. However, in the setting of heart failure (HF), preload augmentation may precipitate HF decompensation. In this review, we focus on the role of splanchnic nerve modulation and pharmacological therapeutic interventions to prevent HF decompensation through preload reduction. Furthermore, we explore the emerging device-based approaches for cardiac preload reduction while reviewing the ongoing clinical trials.
Collapse
Affiliation(s)
| | | | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Poland
| | - Rafael de la Espriella
- Cardiology Department, Hospital Clínico Universitario de Valencia, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Julio Núñez
- Cardiology Department, Hospital Clínico Universitario de Valencia, Fundación de Investigación INCLIVA, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; CIBER Cardiovascular, Madrid, Spain
| | - Carlos G Santos-Gallego
- Cardiology Department, Mount Sinai Hospital, NYC; Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, NYC
| | | | - Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA; Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
5
|
Bertolone DT, Paolisso P, Gallinoro E, Belmonte M, Bermpeis K, De Colle C, Esposito G, Caglioni S, Fabbricatore D, Leone A, Valeriano C, Shumkova M, Storozhenko T, Viscusi MM, Botti G, Verstreken S, Morisco C, Barbato E, Bartunek J, Vanderheyden M. Innovative Device-Based Strategies for Managing Acute Decompensated Heart Failure. Curr Probl Cardiol 2023; 48:102023. [PMID: 37553060 DOI: 10.1016/j.cpcardiol.2023.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Acute decompensated heart failure (ADHF) is a major cause of hospitalizations in older adults, leading to high mortality, morbidity, and healthcare costs. To address the persistent poor outcomes in ADHF, novel device-based approaches targeting specific pathophysiological mechanisms are urgently needed. The recently introduced DRI2P2S classification categorizes these innovative therapies based on their mechanisms. Devices include dilators (increasing venous capacitance), removers (directly removing sodium and water), inotropes (enhancing left ventricular contractility), interstitials (accelerating lymph removal), pushers (increasing renal arterial pressure), pullers (decreasing renal venous pressure), and selective drippers (selective intrarenal drug infusion). Some are tailored for chronic HF, while others focus on the acute setting. Most devices are in early development, necessitating further research to understand mechanisms, assess clinical effectiveness, and ensure safety before routine use in ADHF management. Exploring these innovative device-based strategies may lead to improved outcomes and revolutionize HF treatment in the future.
Collapse
Affiliation(s)
- Dario Tino Bertolone
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy; Division of University Cardiology, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Division of University Cardiology, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | | | - Cristina De Colle
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Giuseppe Esposito
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | | | - Davide Fabbricatore
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Attilio Leone
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Chiara Valeriano
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | | | | | - Michele Mattia Viscusi
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Giulia Botti
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | | | - Carmine Morisco
- Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Jozef Bartunek
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | | |
Collapse
|
6
|
Martens P, Burkhoff D, Cowger JA, Jorde UP, Kapur NK, Tang WHW. Emerging Individualized Approaches in the Management of Acute Cardiorenal Syndrome With Renal Assist Devices. JACC. HEART FAILURE 2023; 11:1289-1303. [PMID: 37676211 DOI: 10.1016/j.jchf.2023.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 09/08/2023]
Abstract
Growing insights into the pathophysiology of acute cardiorenal syndrome (CRS) in acute decompensated heart failure have indicated that not every rise in creatinine is associated with adverse outcomes. Detection of persistent volume overload and diuretic resistance associated with creatinine rise may identify patients with true acute CRS. More in-depth phenotyping is needed to identify pathologic processes in renal arterial perfusion, venous outflow, and microcirculatory-interstitial-lymphatic axis alterations that can contribute to acute CRS. Recently, various novel device-based interventions designed to target different pathophysiologic components of acute CRS are in early feasibility and proof-of-concept studies. However, appropriate trial endpoints that reflect improvement in cardiorenal trajectories remain elusive and highly debated. In this review the authors describe the variety of physiological derangements leading to acute CRS and the opportunity to individualize the management of acute CRS with novel renal assist devices that can target specific components of these alterations.
Collapse
Affiliation(s)
- Pieter Martens
- Kaufman Center for Heart Failure Treatment and Recovery, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Jennifer A Cowger
- Division of Cardiovascular Medicine, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ulrich P Jorde
- Department of Medicine, Division of Cardiology, The Cardiovascular Center, Tufts Medical Center, Boston, Massachusetts, USA
| | - Navin K Kapur
- Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
7
|
Zymliński R, Biegus J, Vanderheyden M, Gajewski P, Dierckx R, Bartunek J, Ponikowski P. Safety, Feasibility of Controllable Decrease of Vena Cava Pressure by Doraya Catheter in Heart Failure. JACC Basic Transl Sci 2023; 8:394-402. [PMID: 37138800 PMCID: PMC10149648 DOI: 10.1016/j.jacbts.2023.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 05/05/2023]
Abstract
Lowering elevated central venous pressure may reduce renal dysfunction in acute heart failure (AHF) patients. The Doraya catheter lowers renal venous pressure by creating a gradient in the inferior vena cava below the renal veins. Here, we present a first-in-human feasibility study of the Doraya catheter performed on 9 AHF patients. We assessed the safety, feasibility, and acute clinical (hemodynamic and renal) effects of transient Doraya catheter deployment when added to the standard diuretic-based regimen in AHF patients with a poor diuretic response. The procedures decreased central venous pressure from 18.4 ± 3.8 mm Hg to 12.4 ± 4.7 mm Hg (P < 0.001) and improved mean diuresis and clinical signs of congestion. No device-related serious adverse events were observed. Thus, Doraya catheter deployment was safe and feasible in AHF patients. (First In Human Study of the Doraya Catheter for the Treatment of AHF Patients; NCT03234647).
Collapse
Affiliation(s)
- Robert Zymliński
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
- Address for correspondence: Dr Jan Biegus, Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | | | - Piotr Gajewski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Riet Dierckx
- Cardiovascular Center, OLV Hospital, Aalst, Belgium
| | | | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
8
|
Brooksbank JA, Albert C. Device-based therapies for decompensated heart failure. Curr Opin Cardiol 2023; 38:116-123. [PMID: 36718621 DOI: 10.1097/hco.0000000000001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Despite improvements in medical therapies, patients with heart failure continue to suffer significant morbidity and mortality. Acute decompensated heart failure (ADHF) remains a common and serious medical condition with a myriad of implications on patient survival and quality of life, and heart failure related readmissions persist [1-3]. RECENT FINDINGS From the detection of prehospitalization decompensation and inpatient management of ADHF to stabilization of cardiogenic shock and durable mechanical circulatory support, device-based therapies are utilized across the spectrum of heart failure management. At present, there are numerous device-based therapies commonly used in clinical practice and many more devices in the early clinical-trial phase aimed at attenuation of ADHF. SUMMARY In this review, we examine recent updates in the breadth and use of devices-based therapies in these three main domains: ambulatory heart failure, acute decompensated heart failure, and cardiogenic shock. Device-based therapies for decompensated heart failure will continue to grow in number, indication, and complexity, making recognition and familiarity with available technologies of increased importance for research and clinical practice.
Collapse
Affiliation(s)
- Jeremy A Brooksbank
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute
| | - Chonyang Albert
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute
- George M. and Linda H. Kaufman Center for Heart Failure and Recovery, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Tang R, Chang Y, Song J. Advances in novel devices for the treatment of heart failure. Heart Fail Rev 2023; 28:331-345. [PMID: 36792818 DOI: 10.1007/s10741-022-10293-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/17/2023]
Abstract
Heart failure (HF) is one of the leading causes of global health impairment. Current drugs are still limited in their effectiveness in the treatment and reversal of HF: for example, drugs for acute HF (AHF) help to reduce congestion and relieve symptoms, but they do little to improve survival; most conventional drugs for HF with preserved ejection fraction (HFpEF) do not improve the prognosis; and drugs have extremely limited effects on advanced HF. In recent years, progress in device therapies has bridged this gap to a certain extent. For example, the availability of the left ventricular assist device has brought new options to numerous advanced HF patients. In addition to this recognizable device, a range of promising novel devices with preclinical or clinical trial results are emerging that seek to treat or reverse HF by providing circulatory support, repairing structural abnormalities in the heart, or providing electrical stimulation. These devices may be useful for the treatment of HF. In this review, we summarized recent advances in novel devices for AHF, HFpEF, and HF with reduced ejection fraction (HFrEF) with the aim of providing a reference for clinical treatment and inspiration for novel device development.
Collapse
Affiliation(s)
- Renjie Tang
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Latib A, Hashim Mustehsan M, Abraham WT, Jorde UP, Bartunek J. Transcatheter interventions for heart failure. EUROINTERVENTION 2023; 18:1135-1149. [PMID: 36861266 PMCID: PMC9936253 DOI: 10.4244/eij-d-22-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/21/2022] [Indexed: 02/19/2023]
Abstract
Despite significant advances in the medical management of patients living with heart failure, there continues to be significant morbidity and mortality associated with the condition. There is a growing need for research and development of additional modalities to fill the management and treatment gaps, reduce hospitalisations and improve the quality of life for patients living with heart failure. In the last decade, there has been a rapid rise in the use of non-valvular catheter-based therapies for the management of chronic heart failure to complement existing guideline-directed management. They target well-defined mechanistic and pathophysiological processes critical to the progression of heart failure including left ventricular remodelling, neurohumoral activation, and congestion. In this review, we will explore the physiology, rationale, and current stages of the clinical development of the existing procedures.
Collapse
Affiliation(s)
- Azeem Latib
- Division of Cardiology, Montefiore Medical Center, The Bronx, NY, USA
| | | | - William T Abraham
- Division of Cardiology, The Ohio State University, Columbus, OH, USA
| | - Ulrich P Jorde
- Division of Cardiology, Montefiore Medical Center, The Bronx, NY, USA
| | | |
Collapse
|
11
|
de Oliveira Cardoso C, Elgalad A, Li K, Perin EC. Device-based therapy for decompensated heart failure: An updated review of devices in development based on the DRI2P2S classification. Front Cardiovasc Med 2022; 9:962839. [PMID: 36211544 PMCID: PMC9532699 DOI: 10.3389/fcvm.2022.962839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Congestive heart failure (HF) is a devastating disease leading to prolonged hospitalization, high morbidity and mortality rates, and increased costs. Well-established treatments for decompensated or unstable patients include medications and mechanical cardiac support devices. For acute HF decompensation, new devices are being developed to help relieve symptoms and recover heart and renal function in these patients. A recent device-based classification scheme, collectively classified as DRI2P2S, has been proposed to better describe these new device-based therapies based on their mechanism: dilators (increase venous capacitance), removers (direct removal of sodium and water), inotropes (increase left ventricular contractility), interstitials (accelerate removal of lymph), pushers (increase renal arterial pressure), pullers (decrease renal venous pressure), and selective (selective intrarenal drug infusion). In this review, we describe the new class of medical devices with the most current results reported in preclinical models and clinical trials.
Collapse
Affiliation(s)
| | - Abdelmotagaly Elgalad
- Center for Preclinical Surgical and Interventional Research, Texas Heart Institute, Houston, TX, United States
- *Correspondence: Abdelmotagaly Elgalad,
| | - Ke Li
- Center for Preclinical Surgical and Interventional Research, Texas Heart Institute, Houston, TX, United States
| | - Emerson C. Perin
- Center for Clinical Research, Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Despite advances in heart failure (HF) therapies, the associated morbidity, mortality, hospitalization rates, and healthcare expenditures remain high. A significant proportion of patients with HF remain symptomatic despite receiving optimal medical therapy. Consequently, there exists a large unmet clinical need for novel therapies for treating acute and chronic HF. With the exponential growth of transcatheter interventions in structural heart disease, novel applications of minimally invasive, device-based therapies have been sought in an effort to bridge this treatment gap. The rationale, development, and current data underscoring these therapies will be summarized in this review. RECENT FINDINGS Recent studies have demonstrated the safety and efficacy of devices that alter left ventricular geometry (i.e., ventriculoplasty), create anatomic shunts to decompress the left atrium, and modulate vena caval and renal blood flow. However pivotal large trials evaluating clinical outcomes are ongoing. SUMMARY Innovative device-based therapies may expand our armamentarium against the growing heterogeneous and morbid HF syndrome.
Collapse
|
13
|
Zymliński R, Dierckx R, Biegus J, Vanderheyden M, Bartunek J, Ponikowski P. Novel IVC Doraya Catheter Provides Congestion Relief in Patients With Acute Heart Failure. JACC Basic Transl Sci 2022; 7:326-327. [PMID: 35411326 PMCID: PMC8993904 DOI: 10.1016/j.jacbts.2022.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
A Glimpse Into the Future of Transcatheter Interventional Heart Failure Therapies. JACC Basic Transl Sci 2022; 7:181-191. [PMID: 35257045 PMCID: PMC8897161 DOI: 10.1016/j.jacbts.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
HF affects millions of patients every year, adding a significant financial burden to global health care systems. This review discusses the role of novel transcatheter-based therapies for the management of HF. Ongoing clinical trials will provide answers on the potential clinical benefits of these technologies in HF outcomes.
Chronic heart failure is one of the most debilitating chronic conditions affecting millions of people and adding a significant financial burden to health care systems worldwide. Despite the significant therapeutic advances achieved over the last decade, morbidity and mortality remain high. Multiple catheter-based interventional therapies targeting different physiological and anatomical targets are already under different stages of clinical investigation. The present paper provides a technical overview of the most relevant catheter-based interventional therapies under clinical investigation.
Collapse
Key Words
- CI, confidence interval
- COVID-19, coronavirus disease 2019
- CS, coronary sinus
- CVP, central venous pressure
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HR, hazard ratio
- LA, left atrium/atrial
- LAP, left atrial pressure
- LV, left ventricular
- LVEDV, left ventricular end-diastolic volume
- LVEF, left ventricular ejection fraction
- LVESV, left ventricular end-systolic volume
- LVESVi, left ventricular end-systolic volume index
- NYHA, New York Heart Association
- PCWP, pulmonary capillary wedge pressure
- RA, right atrium/atrial
- RAP, right atrial pressure
- SVC, superior vena cava
- catheter-based therapies
- heart failure
- interventional heart failure
Collapse
|
15
|
|
16
|
Costanzo MR. Novel Devices for the Cardiorenal Syndrome in Heart Failure. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2020. [DOI: 10.1007/s11936-020-00823-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Rosenblum H, Kapur NK, Abraham WT, Udelson J, Itkin M, Uriel N, Voors AA, Burkhoff D. Conceptual Considerations for Device-Based Therapy in Acute Decompensated Heart Failure. Circ Heart Fail 2020; 13:e006731. [DOI: 10.1161/circheartfailure.119.006731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute decompensated heart failure remains the most common cause of hospitalization in older adults, and studies of pharmacological therapies have yielded limited progress in improving outcomes for these patients. This has prompted the development of novel device–based interventions, classified mechanistically based on the way in which they intend to improve central hemodynamics, increase renal perfusion, remove salt and water from the body, and result in clinically meaningful degrees of decongestion. In this review, we provide an overview of the pathophysiology of acute decompensated heart failure, current management strategies, and failed pharmacological therapies. We provide an in depth description of seven investigational device classes designed to target one or more of the pathophysiologic derangements in acute decompensated heart failure, denoted by the acronym DRI
2
P
2
S. Dilators decrease central pressures by increasing venous capacitance through splanchnic nerve modulation. Removers remove excess fluid through peritoneal dialysis, aquaphoresis, or hemodialysis. Inotropes directly modulate the cardiac nerve plexus to enhance ventricular contractility. Interstitial devices enhance volume removal through lymphatic duct decompression. Pushers are novel descending aorta rotary pumps that directly increase renal artery pressure. Pullers reduce central venous pressures or renal venous pressures to increase renal perfusion. Selective intrarenal artery catheters facilitate direct delivery of short acting vasodilator therapy. We also discuss challenges posed in clinical trial design for these novel device–based strategies including optimal patient selection and appropriate end points to establish efficacy.
Collapse
Affiliation(s)
- Hannah Rosenblum
- Division of Cardiology, New York Presbyterian Hospital, New York, NY (H.R., N.U.)
| | - Navin K. Kapur
- Cardiology, Tufts Medical Center, Boston, MA (N.K.K., J.U.)
| | - William T. Abraham
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH (W.T.A.)
| | - James Udelson
- Cardiology, Tufts Medical Center, Boston, MA (N.K.K., J.U.)
| | - Maxim Itkin
- Center for Lymphatic Disorders, Perelman School of Medicine, University of Pennsylvania, Philadephia, PA (M.I.)
| | - Nir Uriel
- Division of Cardiology, New York Presbyterian Hospital, New York, NY (H.R., N.U.)
| | - Adriaan A. Voors
- Department of Cardiology, University of Groningen, Groningen, the Netherlands (A.A.V.)
| | | |
Collapse
|
18
|
Hauptman PJ, Rich MW. A New Home for Innovation. J Card Fail 2019; 25:853. [PMID: 31761150 DOI: 10.1016/j.cardfail.2019.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Paul J Hauptman
- University of Tennessee Graduate School of Medicine, Knoxville TN, 1924 Alcoa Highway, Knoxville TN 37924, 865 305 9290.
| | - Michael W Rich
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
19
|
Shah KS, Fang JC. Treating the Cardiorenal Syndrome: A Sledgehammer for a Needle's Work? J Card Fail 2019; 25:935-936. [PMID: 31678395 DOI: 10.1016/j.cardfail.2019.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Kevin S Shah
- University of Utah Health, Salt Lake City, Utah.
| | | |
Collapse
|