1
|
Paudel R, Jafri MS, Ullah A. Gain-of-Function and Loss-of-Function Mutations in the RyR2-Expressing Gene Are Responsible for the CPVT1-Related Arrhythmogenic Activities in the Heart. Curr Issues Mol Biol 2024; 46:12886-12910. [PMID: 39590361 PMCID: PMC11592891 DOI: 10.3390/cimb46110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca2+ release (SOICR), and (d) loss of function. The goal of this study was to use computational models to understand these four mechanisms and how they might contribute to arrhythmia. To this end, we have developed a local control stochastic model of a ventricular cardiac myocyte and used it to investigate how the Ca2+ dynamics in the mutant RyR2 are responsible for the development of an arrhythmogenic episode under the condition of β-adrenergic (β-AR) stimulation or pauses afterward. Into the model, we have incorporated 20,000 distinct cardiac dyads consisting of stochastically gated L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) and the intervening dyadic cleft to analyze the alterations in Ca2+ dynamics. Recent experimental findings were incorporated into the model parameters to test these proposed mechanisms and their role in triggering arrhythmias. The model could not find any connection between SOICR and the destabilization of binding proteins as the arrhythmic mechanisms in the mutant myocyte. On the other hand, the model was able to observe loss-of-function and gain-of-function mutations resulting in EADs (Early Afterdepolarizations) and variations in action potential amplitudes and durations as the precursors to generate arrhythmia, respectively. These computational studies demonstrate how GOF and LOF mutations can lead to arrhythmia and cast doubt on the feasibility of SOICR as a mechanism of arrhythmia.
Collapse
Affiliation(s)
- Roshan Paudel
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
2
|
Greenwell AA, Gopal K, Ussher JR. Myocardial Energy Metabolism in Non-ischemic Cardiomyopathy. Front Physiol 2020; 11:570421. [PMID: 33041869 PMCID: PMC7526697 DOI: 10.3389/fphys.2020.570421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
As the most metabolically demanding organ in the body, the heart must generate massive amounts of energy adenosine triphosphate (ATP) from the oxidation of fatty acids, carbohydrates and other fuels (e.g., amino acids, ketone bodies), in order to sustain constant contractile function. While the healthy mature heart acts omnivorously and is highly flexible in its ability to utilize the numerous fuel sources delivered to it through its coronary circulation, the heart’s ability to produce ATP from these fuel sources becomes perturbed in numerous cardiovascular disorders. This includes ischemic heart disease and myocardial infarction, as well as in various cardiomyopathies that often precede the development of overt heart failure. We herein will provide an overview of myocardial energy metabolism in the healthy heart, while describing the numerous perturbations that take place in various non-ischemic cardiomyopathies such as hypertrophic cardiomyopathy, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and the cardiomyopathy associated with the rare genetic disease, Barth Syndrome. Based on preclinical evidence where optimizing myocardial energy metabolism has been shown to attenuate cardiac dysfunction, we will discuss the feasibility of myocardial energetics optimization as an approach to treat the cardiac pathology associated with these various non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Bround MJ, Wambolt R, Cen H, Asghari P, Albu RF, Han J, McAfee D, Pourrier M, Scott NE, Bohunek L, Kulpa JE, Chen SRW, Fedida D, Brownsey RW, Borchers CH, Foster LJ, Mayor T, Moore EDW, Allard MF, Johnson JD. Cardiac Ryanodine Receptor (Ryr2)-mediated Calcium Signals Specifically Promote Glucose Oxidation via Pyruvate Dehydrogenase. J Biol Chem 2016; 291:23490-23505. [PMID: 27621312 DOI: 10.1074/jbc.m116.756973] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 11/06/2022] Open
Abstract
Cardiac ryanodine receptor (Ryr2) Ca2+ release channels and cellular metabolism are both disrupted in heart disease. Recently, we demonstrated that total loss of Ryr2 leads to cardiomyocyte contractile dysfunction, arrhythmia, and reduced heart rate. Acute total Ryr2 ablation also impaired metabolism, but it was not clear whether this was a cause or consequence of heart failure. Previous in vitro studies revealed that Ca2+ flux into the mitochondria helps pace oxidative metabolism, but there is limited in vivo evidence supporting this concept. Here, we studied heart-specific, inducible Ryr2 haploinsufficient (cRyr2Δ50) mice with a stable 50% reduction in Ryr2 protein. This manipulation decreased the amplitude and frequency of cytosolic and mitochondrial Ca2+ signals in isolated cardiomyocytes, without changes in cardiomyocyte contraction. Remarkably, in the context of well preserved contractile function in perfused hearts, we observed decreased glucose oxidation, but not fat oxidation, with increased glycolysis. cRyr2Δ50 hearts exhibited hyperphosphorylation and inhibition of pyruvate dehydrogenase, the key Ca2+-sensitive gatekeeper to glucose oxidation. Metabolomic, proteomic, and transcriptomic analyses revealed additional functional networks associated with altered metabolism in this model. These results demonstrate that Ryr2 controls mitochondrial Ca2+ dynamics and plays a specific, critical role in promoting glucose oxidation in cardiomyocytes. Our findings indicate that partial RYR2 loss is sufficient to cause metabolic abnormalities seen in heart disease.
Collapse
Affiliation(s)
- Michael J Bround
- From the Cardiovascular Research Group, Life Sciences Institute and.,Departments of Cellular and Physiological Sciences
| | - Rich Wambolt
- From the Cardiovascular Research Group, Life Sciences Institute and.,the Department of Pathology and Laboratory Medicine, University of British Columbia and the Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6
| | - Haoning Cen
- From the Cardiovascular Research Group, Life Sciences Institute and.,Departments of Cellular and Physiological Sciences
| | - Parisa Asghari
- From the Cardiovascular Research Group, Life Sciences Institute and.,Departments of Cellular and Physiological Sciences
| | - Razvan F Albu
- Biochemistry and Molecular Biology, and.,the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Jun Han
- the University of Victoria-Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, and
| | - Donald McAfee
- From the Cardiovascular Research Group, Life Sciences Institute and.,Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Marc Pourrier
- From the Cardiovascular Research Group, Life Sciences Institute and.,Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Nichollas E Scott
- Biochemistry and Molecular Biology, and.,the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Lubos Bohunek
- the Department of Pathology and Laboratory Medicine, University of British Columbia and the Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6
| | | | - S R Wayne Chen
- the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 2T9, Canada
| | - David Fedida
- From the Cardiovascular Research Group, Life Sciences Institute and.,Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | | | - Christoph H Borchers
- the University of Victoria-Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, and
| | - Leonard J Foster
- Biochemistry and Molecular Biology, and.,the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Thibault Mayor
- Biochemistry and Molecular Biology, and.,the Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Edwin D W Moore
- From the Cardiovascular Research Group, Life Sciences Institute and.,Departments of Cellular and Physiological Sciences
| | - Michael F Allard
- From the Cardiovascular Research Group, Life Sciences Institute and.,the Department of Pathology and Laboratory Medicine, University of British Columbia and the Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6
| | - James D Johnson
- From the Cardiovascular Research Group, Life Sciences Institute and .,Departments of Cellular and Physiological Sciences
| |
Collapse
|
4
|
Mellor KM, Curl CL, Chandramouli C, Pedrazzini T, Wendt IR, Delbridge LMD. Ageing-related cardiomyocyte functional decline is sex and angiotensin II dependent. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9630. [PMID: 24566994 PMCID: PMC4082583 DOI: 10.1007/s11357-014-9630-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/07/2014] [Indexed: 05/19/2023]
Abstract
Clinically, heart failure is an age-dependent pathological phenomenon and displays sex-specific characteristics. The renin-angiotensin system mediates cardiac pathology in heart failure. This study investigated the sexually dimorphic functional effects of ageing combined with angiotensin II (AngII) on cardiac muscle cell function, twitch and Ca(2+)-handling characteristics of isolated cardiomyocytes from young (~13 weeks) and aged (~87 weeks) adult wild type (WT) and AngII-transgenic (TG) mice. We hypothesised that AngII-induced contractile impairment would be exacerbated in aged female cardiomyocytes and linked to Ca(2+)-handling disturbances. AngII-induced cardiomyocyte hypertrophy was evident in young adult mice of both sexes and accentuated by age (aged adult ~21-23 % increases in cell length relative to WT). In female AngII-TG mice, ageing was associated with suppressed cardiomyocyte contractility (% shortening, maximum rate of shortening, maximum rate of relaxation). This was associated with delayed cytosolic Ca(2+) removal during twitch relaxation (Tau ~20 % increase relative to young adult female WT), and myofilament responsiveness to Ca(2+) was maintained. In contrast, aged AngII-TG male cardiomyocytes exhibited peak shortening equivalent to young TG; yet, myofilament Ca(2+) responsiveness was profoundly reduced with ageing. Increased pro-arrhythmogenic spontaneous activity was evident with age and cardiac AngII overexpression in male mice (42-55 % of myocytes) but relatively suppressed in female aged transgenic mice. Female myocytes with elevated AngII appear more susceptible to an age-related contractile deficit, whereas male AngII-TG myocytes preserve contractile function with age but exhibit desensitisation of myofilaments to Ca(2+) and a heightened vulnerability to arrhythmic activity. These findings support the contention that sex-specific therapies are required for the treatment of age-progressive heart failure.
Collapse
Affiliation(s)
- Kimberley M. Mellor
- />Department of Physiology, University of Melbourne, Melbourne, VIC Australia
- />Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Claire L. Curl
- />Department of Physiology, University of Melbourne, Melbourne, VIC Australia
| | | | | | - Igor R. Wendt
- />Department of Physiology, Monash University, Melbourne, VIC Australia
| | - Lea M. D. Delbridge
- />Department of Physiology, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
5
|
Bround MJ, Asghari P, Wambolt RB, Bohunek L, Smits C, Philit M, Kieffer TJ, Lakatta EG, Boheler KR, Moore EDW, Allard MF, Johnson JD. Cardiac ryanodine receptors control heart rate and rhythmicity in adult mice. Cardiovasc Res 2012; 96:372-80. [PMID: 22869620 DOI: 10.1093/cvr/cvs260] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS The molecular mechanisms controlling heart function and rhythmicity are incompletely understood. While it is widely accepted that the type 2 ryanodine receptor (Ryr2) is the major Ca(2+) release channel in excitation-contraction coupling, the role of these channels in setting a consistent beating rate remains controversial. Gain-of-function RYR2 mutations in humans and genetically engineered mouse models are known to cause Ca(2+) leak, arrhythmias, and sudden cardiac death. Embryonic stem-cell derived cardiomyocytes lacking Ryr2 display slower beating rates, but no supporting in vivo evidence has been presented. The aim of the present study was to test the hypothesis that RYR2 loss-of-function would reduce heart rate and rhythmicity in vivo. METHODS AND RESULTS We generated inducible, tissue-specific Ryr2 knockout mice with acute ∼50% loss of RYR2 protein in the heart but not in other tissues. Echocardiography, working heart perfusion, and in vivo ECG telemetry demonstrated that deletion of Ryr2 was sufficient to cause bradycardia and arrhythmia. Our results also show that cardiac Ryr2 knockout mice exhibit functional and structural hallmarks of heart failure, including sudden cardiac death. CONCLUSION These results illustrate that the RYR2 channel plays an essential role in pacing heart rate. Moreover, we find that RYR2 loss-of-function can lead to fatal arrhythmias typically associated with gain-of-function mutations. Given that RYR2 levels can be reduced in pathological conditions, including heart failure and diabetic cardiomyopathy, we predict that RYR2 loss contributes to disease-associated bradycardia, arrhythmia, and sudden death.
Collapse
Affiliation(s)
- Michael J Bround
- Cardiovascular Research Group, Life Sciences Institute, University of British Columbia, 5358 Life Sciences Building, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hanna AD, Janczura M, Cho E, Dulhunty AF, Beard NA. Multiple actions of the anthracycline daunorubicin on cardiac ryanodine receptors. Mol Pharmacol 2011; 80:538-49. [PMID: 21697274 DOI: 10.1124/mol.111.073478] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Our aim was to examine the molecular basis for acute effects of the anthracycline daunorubicin on cardiac ryanodine receptor (RyR2) channels and cardiac calsequestrin (CSQ2). Cardiotoxic effects of anthracyclines preclude their chemotherapeutic use in patients with pre-existing heart conditions. To address this significant problem, the mechanisms of anthracycline toxicity must be defined but at present are poorly understood. RyR2 channel activity was assessed by measuring Ca²⁺ release from cardiac sarcoplasmic reticulum vesicles and by examining single RyR2 channels inserted into artificial lipid bilayers. We show that 0.5 to 10 μM daunorubicin increases the activity of RyR2 channels after 5 to 10 min and that activity then declines to very low levels when channels are exposed to daunorubicin concentrations of ≥ 2.5 μM for a further 10 to 20 min. Extensive dissection of these effects shows for the first time that the activation results from a redox-independent binding of daunorubicin to the RyR2 complex. Novel data include the demonstration of daunorubicin binding to RyR2. We provide compelling evidence that RyR2 channel inhibition is due to the oxidation of free SH groups. The oxidation reaction is prevented by the presence of 1 mM dithiothreitol. We also present novel data showing that CSQ2 modifies the response of RyR2 to daunorubicin, but that the response of RyR2 is not dependent on daunorubicin binding to CSQ2. We suggest that binding of daunorubicin to RyR2 and CSQ2, and oxidation of RyR2, are all likely to contribute to anthracycline-induced cardiotoxicity during chemotherapy.
Collapse
Affiliation(s)
- Amy D Hanna
- John Curtin School of Medical Research, Australian Capital Territory, Australia
| | | | | | | | | |
Collapse
|
7
|
Priori SG, Napolitano C. Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels. J Clin Invest 2005; 115:2033-8. [PMID: 16075044 PMCID: PMC1180555 DOI: 10.1172/jci25664] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here we review the current knowledge about the mutations of the gene encoding the cardiac ryanodine receptor (RyR2) that cause cardiac arrhythmias. Similarities between the mutations identified in the RyR2 gene and those found in the gene RyR1 that cause malignant hyperthermia and central core disease are discussed. In vitro functional characterization of RyR1 and RyR2 mutants is reviewed, with a focus on the contribution that in vitro expression studies have made to our understanding of related human diseases.
Collapse
Affiliation(s)
- Silvia G Priori
- Molecular Cardiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Maugeri, Pavia, Italy.
| | | |
Collapse
|