1
|
Bai J, Lin QY, An X, Liu S, Wang Y, Xie Y, Liao J. Low-Dose Gallic Acid Administration Does Not Improve Diet-Induced Metabolic Disorders and Atherosclerosis in Apoe Knockout Mice. J Immunol Res 2022; 2022:7909971. [PMID: 35652108 PMCID: PMC9150997 DOI: 10.1155/2022/7909971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 01/17/2023] Open
Abstract
Diets rich in polyphenols are known to be beneficial for cardiovascular health. Gallic acid (GA) is a plant-derived triphenolic chemical with multiple cardio-protective properties, such as antiobesity, anti-inflammation, and antioxidation. However, whether GA could protect against atherosclerotic cardiovascular diseases is still not defined. Here, we investigated the effects of low-dose GA administration on diet-induced metabolic disorders and atherosclerosis in the atherosclerosis-prone apolipoprotein E (Apoe) knockout mice fed on a high-fat Western-type diet (WTD) for 8 weeks. Our data showed that GA administration by oral gavage at a daily dosage of 20 mg/kg body weight did not significantly ameliorate WTD-induced hyperlipidemia, hepatosteatosis, adipogenesis, or insulin resistance; furthermore, GA administration did not significantly ameliorate WTD-induced atherosclerosis. In conclusion, our data demonstrate that low-dose GA administration does not elicit significant health effect on diet-induced metabolic disorders or atherosclerosis in the Apoe knockout mice. Whether GA could be beneficial for atherosclerotic cardiovascular diseases therefore needs further exploration.
Collapse
Affiliation(s)
- Jie Bai
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
2
|
Gunes O, Turgut E, Bag YM, Gundoğan E, Gunes A, Sumer F. The impact of splenectomy on human lipid metabolism. Ups J Med Sci 2022; 127:8500. [PMID: 35756571 PMCID: PMC9199581 DOI: 10.48101/ujms.v127.8500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Splenectomy impacts hematological, immunological, and metabolic functions of the patient. Since our understanding of its metabolic effects, in particular effects on lipid metabolism, is limited, this study aims to investigate the effects of splenectomy on lipid metabolism. METHODS The data from 316 patients undergoing splenectomy between 2009 and 2019 were retrospectively analyzed. Thirty-eight patients whose serum lipid values were measured both preoperatively and 1 year after surgery were included in this study. RESULTS Significantly higher levels of total cholesterol, low-density lipoprotein (LDL), and non-high-density lipoprotein (HDL) lipid profile were found in the postsplenectomy measurements. However, no significant differences were recorded in levels of triglyceride, HDL, or very-LDL. CONCLUSION We determined that splenectomy does impact lipid metabolism, and that the metabolic effects of splenectomy should further be investigated.
Collapse
Affiliation(s)
- Orgun Gunes
- Department of Gastrointestinal Surgery, Atatürk Training and Research Hospital, Izmir, Turkey
| | - Emre Turgut
- Department of Gastrointestinal Surgery, Inonu University Turgut Ozal Medical Center, Malatya, Turkey
| | - Yusuf Murat Bag
- Department of Gastrointestinal Surgery, Van Training and Research Hospital, Van, Turkey
| | - Ersin Gundoğan
- Department of Gastrointestinal Surgery, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Ajda Gunes
- Department of Hematology, Ege University, Izmir, Turkey
| | - Fatih Sumer
- Department of Gastrointestinal Surgery, Irmet Hospital, Tekirdağ, Turkey
| |
Collapse
|
3
|
Preliminary adipose removal did not prevent diet-induced metabolic disorders in mice. Chin Med J (Engl) 2021; 134:716-724. [PMID: 33410621 PMCID: PMC7989994 DOI: 10.1097/cm9.0000000000001334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Obesity is a fundamental factor in metabolic disorders such as hyperlipidemia, insulin resistance, fatty liver, and atherosclerosis. However, effective preventive measures are still lacking. This study aimed to investigate different surgical protocols for removing partial adipose tissue before the onset of obesity and determine whether, and by which protocol, preliminary adipose removal could exert potent preventive effects against diet-induced metabolic disorders. Methods: Male low-density lipoprotein receptor (LDL-R) knockout (KO) mice were randomly divided into four groups and subjected to epididymal fat removal (Epi-FR) surgery, subcutaneous fat removal (suQ-FR) surgery, both subcutaneous and epididymal fat removal (Epi + suQ-FR) surgery, or sham-operation. After 1 week of recovery, all mice were given a high-fat diet (HFD) for 10 weeks to induce metabolic disorders. Results: In the Epi-FR group and the sham-operated group, the mean numbers of the residual subcutaneous fat were 28.59 mg/g and 18.56 mg/g, respectively. The expression of relative genes such as Pparg, Cebpa, Dgat2, Fabp4 and Cd36 in the residual subcutaneous fat increased 2.62, 3.90, 3.11, 2.06, 1.78 times in the Epi-FR group compared with that in the sham-operated group. Whereas in the other fat-removal groups, the residual fat depots had no significant change in either size or gene expression, as compared with those of the sham-operated group. Plasma lipid and glucose levels and insulin sensitivity, as detected by the glucose tolerance test, were not significantly alleviated in the three fat removal groups. Liver mass or lipid content was not attenuated in any of the three fat removal groups. The atherosclerosis burdens in the entire inner aorta and aortic root did not decrease in any of the three fat removal groups. Conclusions: Our data suggest that removal of epididymal adipose or subcutaneous adipose alone or in combination before the onset of obesity did not protect against hyperlipidemia, insulin resistance, fatty liver, or atherosclerosis in LDL-R KO mice fed with a HFD. Hence, adipose removal possibly does not represent a potential approach in preventing obesity-related metabolic disorders in the obesity-susceptible population.
Collapse
|
4
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Castrillo A, Boscá L. Contribution of Extramedullary Hematopoiesis to Atherosclerosis. The Spleen as a Neglected Hub of Inflammatory Cells. Front Immunol 2020; 11:586527. [PMID: 33193412 PMCID: PMC7649205 DOI: 10.3389/fimmu.2020.586527] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) incidence is becoming higher. This fact is promoted by metabolic disorders such as obesity, and aging. Atherosclerosis is the underlying cause of most of these pathologies. It is a chronic inflammatory disease that begins with the progressive accumulation of lipids and fibrotic materials in the blood-vessel wall, which leads to massive leukocyte recruitment. Rupture of the fibrous cap of the atherogenic cusps is responsible for tissue ischemic events, among them myocardial infarction. Extramedullary hematopoiesis (EMH), or blood cell production outside the bone marrow (BM), occurs when the normal production of these cells is impaired (chronic hematological and genetic disorders, leukemia, etc.) or is altered by metabolic disorders, such as hypercholesterolemia, or after myocardial infarction. Recent studies indicate that the main EMH tissues (spleen, liver, adipose and lymph nodes) complement the hematopoietic function of the BM, producing circulating inflammatory cells that infiltrate into the atheroma. Indeed, the spleen, which is a secondary lymphopoietic organ with high metabolic activity, contains a reservoir of myeloid progenitors and monocytes, constituting an important source of inflammatory cells to the atherosclerotic lesion. Furthermore, the spleen also plays an important role in lipid homeostasis and immune-cell selection. Interestingly, clinical evidence from splenectomized subjects shows that they are more susceptible to developing pathologies, such as dyslipidemia and atherosclerosis due to the loss of immune selection. Although CVDs represent the leading cause of death worldwide, the mechanisms involving the spleen-atherosclerosis-heart axis cross-talk remain poorly characterized.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM) and Universidad de Las Palmas, Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM) and Universidad de Las Palmas, Gran Canaria, Spain
| |
Collapse
|
5
|
Liao J, An X, Yang X, Lin QY, Liu S, Xie Y, Bai J, Xia YL, Li HH. Deficiency of LMP10 Attenuates Diet-Induced Atherosclerosis by Inhibiting Macrophage Polarization and Inflammation in Apolipoprotein E Deficient Mice. Front Cell Dev Biol 2020; 8:592048. [PMID: 33195259 PMCID: PMC7644912 DOI: 10.3389/fcell.2020.592048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Macrophage polarization and inflammation are key factors for the onset and progression of atherosclerosis. The immunoproteasome complex consists of three inducible catalytic subunits (LMP2, LMP10, and LMP7) that play a critical role in the regulation of these risk factors. We recently demonstrated that the LMP7 subunit promotes diet-induced atherosclerosis via inhibition of MERTK-mediated efferocytosis. Here, we explored the role of another subunit of LMP10 in the disease process, using ApoE knockout (ko) mice fed on an atherogenic diet (ATD) containing 0.5% cholesterol and 20% fat for 8 weeks as an in vivo atherosclerosis model. We observed that ATD significantly upregulated LMP10 expression in aortic lesions, which were primarily co-localized with plaque macrophages. Conversely, deletion of LMP10 markedly attenuated atherosclerotic lesion area, CD68+ macrophage accumulation, and necrotic core expansion in the plaques, but did not change plasma metabolic parameters, lesional SM22α+ smooth muscle cells, or collagen content. Myeloid-specific deletion of LMP10 by bone marrow transplantation resulted in similar phenotypes. Furthermore, deletion of LMP10 remarkably reduced aortic macrophage infiltration and increased M2/M1 ratio, accompanied by decreased expression of pro-inflammatory M1 cytokines (MCP-1, IL-1, and IL-6) and increased expression of anti-inflammatory M2 cytokines (IL-4 and IL-10). In addition, we confirmed in cultured macrophages that LMP10 deletion blunted macrophage polarization and inflammation during ox-LDL-induced foam cell formation in vitro, which was associated with decreased IκBα degradation and NF-κB activation. Our results show that the immunoproteasome subunit LMP10 promoted diet-induced atherosclerosis in ApoE ko mice possibly through regulation of NF-κB-mediated macrophage polarization and inflammation. Targeting LMP10 may represent a new therapeutic approach for atherosclerosis.
Collapse
Affiliation(s)
- Jiawei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangbo An
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaolei Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Liu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian, China
| | - Yunpeng Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Bai
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Splenic participation in glycemic homeostasis in obese and non-obese male rats. Obes Res Clin Pract 2020; 14:479-486. [DOI: 10.1016/j.orcp.2020.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
|
7
|
Inhibition of the Ubiquitin-Activating Enzyme UBA1 Suppresses Diet-Induced Atherosclerosis in Apolipoprotein E-Knockout Mice. J Immunol Res 2020; 2020:7812709. [PMID: 32258175 PMCID: PMC7109586 DOI: 10.1155/2020/7812709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 01/17/2023] Open
Abstract
Background Ubiquitin-like modifier activating enzyme 1 (UBA1) is the first and major E1 activating enzyme in ubiquitin activation, the initial step of the ubiquitin-proteasome system. Defects in the expression or activity of UBA1 correlate with several neurodegenerative and cardiovascular disorders. However, whether UBA1 contributes to atherosclerosis is not defined. Methods and Results Atherosclerosis was induced in apolipoprotein E-knockout (Apoe-/-) mice fed on an atherogenic diet. UBA1 expression, detected by immunohistochemical staining, was found to be significantly increased in the atherosclerotic plaques, which confirmed to be mainly derived from lesional CD68+ macrophages via immunofluorescence costaining. Inactivation of UBA1 by the specific inhibitor PYR-41 did not alter the main metabolic parameters during atherogenic diet feeding but suppressed atherosclerosis development with less macrophage infiltration and plaque necrosis. PYR-41 did not alter circulating immune cells determined by flow cytometry but significantly reduced aortic mRNA levels of cytokines related to monocyte recruitment (Mcp-1, Vcam-1, and Icam-1) and macrophage proinflammatory responses (Il-1β and Il-6). Besides, PYR-41 also suppressed aortic mRNA expression of NADPH oxidase (Nox1, Nox2, and Nox4) and lesional oxidative stress levels, determined by DHE staining. In vitro, PYR-41 blunted ox-LDL-induced lipid deposition and expression of proinflammatory cytokines (Il-1β and Il-6) and NADPH oxidases (Nox1, Nox2, and Nox4) in cultured RAW264.7 macrophages. Conclusions We demonstrated that UBA1 expression was upregulated and mainly derived from macrophages in the atherosclerotic plaques and inactivation of UBA1 by PYR-41 suppressed atherosclerosis development probably through inhibiting macrophage proinflammatory response and oxidative stress. Our data suggested that UBA1 might be explored as a potential pharmaceutical target against atherosclerosis.
Collapse
|
8
|
Liao J, Xie Y, Lin Q, Yang X, An X, Xia Y, Du J, Wang F, Li HH. Immunoproteasome subunit β5i regulates diet-induced atherosclerosis through altering MERTK-mediated efferocytosis in Apoe knockout mice. J Pathol 2020; 250:275-287. [PMID: 31758542 DOI: 10.1002/path.5368] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022]
Abstract
The immunoproteasome contains three catalytic subunits (β1i, β2i and β5i) that are important modulators of immune cell homeostasis. A previous study showed a correlation between β5i and human atherosclerotic plaque instability; however, the causative role of β5i in atherosclerosis and the underlying mechanisms remain unknown. Here we explored this issue in apolipoprotein E (Apoe) knockout (eKO) mice with genetic deletion or pharmacological inhibition of β5i. We found that β5i expression was upregulated in lesional macrophages after an atherogenic diet (ATD). β5i/Apoe double KO (dKO) mice fed on the ATD had a significant decrease in both lesion area and necrotic core area, compared with eKO controls. Moreover, dKO mice had less caspase-3+ apoptotic cell accumulation but enhanced efferocytosis of apoptotic cells and increased expression of Mer receptor tyrosine kinase (MERTK). Consistently, similar phenotypes were observed in eKO mice transplanted with dKO bone marrow or treated with β5i-specific inhibitor PR-957. Mechanistic studies in vitro revealed that β5i deletion reduced IκBα degradation and inhibited NF-κB activation, promoting Mertk transcription and efferocytosis, thereby attenuating apoptotic cell accumulation. In conclusion, we demonstrate that β5i plays an important role in diet-induced atherosclerosis by altering MERTK-mediated efferocytosis. β5i might be a potential pharmaceutical target against atherosclerosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jiawei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yunpeng Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Qiuyue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Xiaolei Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yunlong Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Jie Du
- Beijing AnZhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Feng Wang
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| |
Collapse
|
9
|
Zhang TT, Xu J, Wang YM, Xue CH. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res 2019; 75:100997. [DOI: 10.1016/j.plipres.2019.100997] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|