1
|
Huang H, Wang W, Liu Z, Jian H, Xue B, Zhu L, Yue K, Yang S. Stepwisely Assembled Multicomponent Fiber with High Water Content and Superior Mechanical Properties for Artificial Ligament. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308063. [PMID: 38200674 DOI: 10.1002/smll.202308063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Indexed: 01/12/2024]
Abstract
The ligament, which connects bones at the joints, has both high water content and excellent mechanical properties in living organisms. However, it is still challenging to fabricate fibrous materials that possess high water content and ligament-like mechanical characteristics simultaneously. Herein, the design and preparation of a ligament-mimicking multicomponent fiber is reported through stepwise assembly of polysaccharide, calcium, and dopamine. In simulated body fluid, the resulting fiber has a water content of 40 wt%, while demonstrating strength of ≈120 MPa, a Young's modulus of ≈3 GPa, and a toughness of ≈25 MJ m-3. Additionally, the multicomponent fiber exhibits excellent creep and fatigue resistance, as well as biocompatibility to support cell growth in vitro. These findings suggest that the fiber has potential for engineering high-performance artificial ligament.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Weijie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zexin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hanxin Jian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bing Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Kan Yue
- South China Advanced Institute for Soft Mater Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
2
|
Huang H, Trentle M, Liu Z, Xiang K, Higgins W, Wang Y, Xue B, Yang S. Polymer Complex Fiber: Property, Functionality, and Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7639-7662. [PMID: 36719982 DOI: 10.1021/acsami.2c19583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymer complex fibers (PCFs) are a novel kind of fiber material processed from polymer complexes that are assembled through noncovalent interactions. These can realize the synergy of functional components and miscibility on the molecular level. The dynamic character of noncovalent interactions endows PCFs with remarkable properties, such as reversibility, stimuli responsiveness, self-healing, and recyclability, enabling them to be applied in multidisciplinary fields. The objective of this article is to provide a review of recent progress in the field of PCFs. The classification based on chain interactions will be first introduced followed by highlights of the fabrication technologies and properties of PCFs. The effects of composition and preparation method on fiber properties are also discussed, with some emphasis on utilizing these for rational design. Finally, we carefully summarize recent advanced applications of PCFs in the fields of energy storage and sensors, water treatment, biomedical materials, artificial actuators, and biomimetic platforms. This review is expected to deepen the comprehension of PCF materials and open new avenues for developing PCFs with tailor-made properties for advanced application.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Miranda Trentle
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama35294, United States
| | - Zexin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Kehui Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - William Higgins
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama35294, United States
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Bing Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| |
Collapse
|
3
|
Application of mathematical modelling to alginate chitosan polyelectrolyte complexes for the prediction of system behavior with Venlafaxine HCl as a model charged drug. Saudi Pharm J 2022; 30:1507-1520. [DOI: 10.1016/j.jsps.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/23/2022] [Indexed: 11/18/2022] Open
|