1
|
Li S, Jiang S, Jia W, Guo T, Wang F, Li J, Yao Z. Natural antimicrobials from plants: Recent advances and future prospects. Food Chem 2024; 432:137231. [PMID: 37639892 DOI: 10.1016/j.foodchem.2023.137231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Plant-based antimicrobial substances have emerged as promising alternatives to conventional antibiotics and preservatives. Although many review studies have been done in this field, many of these reviews solely focus on specific compounds from particular perspectives. This paper aims to provide a comprehensive review on the various types of plant-based antimicrobial substances, the extraction and purification processes, as well as the application and safety issues. Combining different natural plant-derived substances shows promise in enhancing antimicrobial activities. Moreover, despite the existence of various methods (e.g., microwave-assisted extraction, supercritical fluid extraction) to extract and purify antimicrobial substances, isolating pure compounds remains a laborious process. Sustainability issues should also be considered when developing extraction methods. Additionally, the extraction process generates a significant amount of plant waste, necessitating proper utilization to ensure economic viability. Lastly, not all plant-derived substances are safe, and further research is needed to investigate their toxicity before widespread application.
Collapse
Affiliation(s)
- Shuo Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Tongming Guo
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|