1
|
Di Lorenzo F, Crisafi F, La Cono V, Yakimov MM, Molinaro A, Silipo A. The Structure of the Lipid A of Gram-Negative Cold-Adapted Bacteria Isolated from Antarctic Environments. Mar Drugs 2020; 18:md18120592. [PMID: 33255932 PMCID: PMC7759928 DOI: 10.3390/md18120592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022] Open
Abstract
Gram-negative Antarctic bacteria adopt survival strategies to live and proliferate in an extremely cold environment. Unusual chemical modifications of the lipopolysaccharide (LPS) and the main component of their outer membrane are among the tricks adopted to allow the maintenance of an optimum membrane fluidity even at particularly low temperatures. In particular, the LPS’ glycolipid moiety, the lipid A, typically undergoes several structural modifications comprising desaturation of the acyl chains, reduction in their length and increase in their branching. The investigation of the structure of the lipid A from cold-adapted bacteria is, therefore, crucial to understand the mechanisms underlying the cold adaptation phenomenon. Here we describe the structural elucidation of the highly heterogenous lipid A from three psychrophiles isolated from Terra Nova Bay, Antarctica. All the lipid A structures have been determined by merging data that was attained from the compositional analysis with information from a matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS) and MS2 investigation. As lipid A is also involved in a structure-dependent elicitation of innate immune response in mammals, the structural characterization of lipid A from such extremophile bacteria is also of great interest from the perspective of drug synthesis and development inspired by natural sources.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Napoli, Italy;
- Correspondence: (F.D.L.); (A.S.)
| | - Francesca Crisafi
- Marine Molecular Microbiology & Biotechnology Institute for Biological Resources and Marine Biotechnologies, CNR-IRBIM Sede di Messina, Spianata San Raineri 86, 98122 Messina, Italy; (F.C.); (V.L.C.); (M.M.Y.)
| | - Violetta La Cono
- Marine Molecular Microbiology & Biotechnology Institute for Biological Resources and Marine Biotechnologies, CNR-IRBIM Sede di Messina, Spianata San Raineri 86, 98122 Messina, Italy; (F.C.); (V.L.C.); (M.M.Y.)
| | - Michail M. Yakimov
- Marine Molecular Microbiology & Biotechnology Institute for Biological Resources and Marine Biotechnologies, CNR-IRBIM Sede di Messina, Spianata San Raineri 86, 98122 Messina, Italy; (F.C.); (V.L.C.); (M.M.Y.)
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Napoli, Italy;
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Napoli, Italy;
- Correspondence: (F.D.L.); (A.S.)
| |
Collapse
|
2
|
Di Lorenzo F, Billod JM, Martín-Santamaría S, Silipo A, Molinaro A. Gram-Negative Extremophile Lipopolysaccharides: Promising Source of Inspiration for a New Generation of Endotoxin Antagonists. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| | - Jean-Marc Billod
- Department of Chemical and Physical Biology; CIB Centro de Investigaciones Biológicas; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Sonsoles Martín-Santamaría
- Department of Chemical and Physical Biology; CIB Centro de Investigaciones Biológicas; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Alba Silipo
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| |
Collapse
|
3
|
Di Lorenzo F. The lipopolysaccharide lipid A structure from the marine sponge-associated bacterium Pseudoalteromonas sp. 2A. Antonie van Leeuwenhoek 2017; 110:1401-1412. [DOI: 10.1007/s10482-017-0865-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
|
4
|
Lipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1439-1450. [PMID: 28108356 DOI: 10.1016/j.bbalip.2017.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/23/2023]
Abstract
Strategies utilizing Toll-like receptor 4 (TLR4) agonists for treatment of cancer, infectious diseases, and other targets report promising results. Potent TLR4 antagonists are also gaining attention as therapeutic leads. Though some principles for TLR4 modulation by lipid A have been described, a thorough understanding of the structure-activity relationship (SAR) is lacking. Only through a complete definition of lipid A-TLR4 SAR is it possible to predict TLR4 signaling effects of discrete lipid A structures, rendering them more pharmacologically relevant. A limited 'toolbox' of lipid A-modifying enzymes has been defined and is largely composed of enzymes from mesophile human and zoonotic pathogens. Expansion of this 'toolbox' will result from extending the search into lipid A biosynthesis and modification by bacteria living at the extremes. Here, we review the fundamentals of lipid A structure, advances in lipid A uses in TLR4 modulation, and the search for novel lipid A-modifying systems in extremophile bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
|
5
|
Sardar RK, Kavita K, Jha B. Lipopolysaccharide of Marinobacter litoralis inhibits swarming motility and biofilm formation in Pseudomonas aeruginosa PA01. Carbohydr Polym 2015; 123:468-75. [PMID: 25843881 DOI: 10.1016/j.carbpol.2015.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/12/2022]
Abstract
The lipopolysaccharide (LPS) was isolated from a marine bacterium identified as Marinobacter litoralis BK09 using 16S rRNA gene sequence similarity analysis. The GCMS analysis showed that the LPS contained 3-hydroxy-dodecanoic acid (C12:0 3OH) (49%), dodecanoic acid (C12:0) (24%) and decanoic acid (C10:0) (19%) as major fatty acids, and the polysaccharide constituents were fucose (53.79%), xylose (28.04%) and mannose (18.15%). The LPS almost completely inhibited swarming motility in Pseudomonas aeruginosa PA01. It also reduced biofilm formation by 50% with no adverse effect on cell growth. The production of virulence factor such as pyocyanin pigment was reduced (∼40%) by the LPS. The LPS did not show any limulus amoebocyte lysate (LAL) gelation activity. The repression of swarming motility, pyocyanin production and biofilm formation by the LPS suggests its potential application against P. aeruginosa infection. This is the first report on characterization and application of LPS from M. litoralis.
Collapse
Affiliation(s)
- Raj Kumar Sardar
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Kumari Kavita
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR, New Delhi, India.
| |
Collapse
|
6
|
Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D'Errico G, Zamyatina A, Peri F, Berisio R, Jerala R, Jiménez-Barbero J, Silipo A, Martín-Santamaría S. Chemistry of lipid A: at the heart of innate immunity. Chemistry 2014; 21:500-19. [PMID: 25353096 DOI: 10.1002/chem.201403923] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In many Gram-negative bacteria, lipopolysaccharide (LPS) and its lipid A moiety are pivotal for bacterial survival. Depending on its structure, lipid A carries the toxic properties of the LPS and acts as a potent elicitor of the host innate immune system via the Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) receptor complex. It often causes a wide variety of biological effects ranging from a remarkable enhancement of the resistance to the infection to an uncontrolled and massive immune response resulting in sepsis and septic shock. Since the bioactivity of lipid A is strongly influenced by its primary structure, a broad range of chemical syntheses of lipid A derivatives have made an enormous contribution to the characterization of lipid A bioactivity, providing novel pharmacological targets for the development of new biomedical therapies. Here, we describe and discuss the chemical aspects regarding lipid A and its role in innate immunity, from the (bio)synthesis, isolation and characterization to the molecular recognition at the atomic level.
Collapse
Affiliation(s)
- Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II via Cinthia 4, 80126 Napoli (Italy).
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nijland R, Hofland T, van Strijp JAG. Recognition of LPS by TLR4: potential for anti-inflammatory therapies. Mar Drugs 2014; 12:4260-73. [PMID: 25056632 PMCID: PMC4113827 DOI: 10.3390/md12074260] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 07/04/2014] [Indexed: 12/29/2022] Open
Abstract
LPS molecules of marine bacteria show structures distinct from terrestrial bacteria, due to the different environment that marine bacteria live in. Because of these different structures, lipid A molecules from marine bacteria are most often poor stimulators of the Toll-like receptor 4 (TLR4) pathway. Due to their low stimulatory potential, these lipid A molecules are suggested to be applicable as antagonists of TLR4 signaling in sepsis patients, where this immune response is amplified and unregulated. Antagonizing lipid A molecules might be used for future therapies against sepsis, therapies that currently do not exist. In this review, we will discuss these differences in lipid A structures and their recognition by the immune system. The modifications present in marine lipid A structures are described, and their potential as LPS antagonists will be discussed. Finally, since clinical trials built on antagonizing lipid A molecules have proven unsuccessful, we propose to also focus on different aspects of the TLR4 signaling pathway when searching for new potential drugs. Furthermore, we put forward the notion that bacteria probably already produce inhibitors of TLR4 signaling, making these bacterial products interesting molecules to investigate for future sepsis therapies.
Collapse
Affiliation(s)
- Reindert Nijland
- Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Tom Hofland
- Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
8
|
Anwar MA, Choi S. Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases. Mar Drugs 2014; 12:2485-514. [PMID: 24796306 PMCID: PMC4052302 DOI: 10.3390/md12052485] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/03/2014] [Accepted: 04/08/2014] [Indexed: 11/17/2022] Open
Abstract
Gram-negative marine bacteria can thrive in harsh oceanic conditions, partly because of the structural diversity of the cell wall and its components, particularly lipopolysaccharide (LPS). LPS is composed of three main parts, an O-antigen, lipid A, and a core region, all of which display immense structural variations among different bacterial species. These components not only provide cell integrity but also elicit an immune response in the host, which ranges from other marine organisms to humans. Toll-like receptor 4 and its homologs are the dedicated receptors that detect LPS and trigger the immune system to respond, often causing a wide variety of inflammatory diseases and even death. This review describes the structural organization of selected LPSes and their association with economically important diseases in marine organisms. In addition, the potential therapeutic use of LPS as an immune adjuvant in different diseases is highlighted.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
9
|
Structural studies of the lipopolysaccharide from the fish pathogen Aeromonas veronii strain Bs19, serotype O16. Mar Drugs 2014; 12:1298-316. [PMID: 24608968 PMCID: PMC3967211 DOI: 10.3390/md12031298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/27/2014] [Accepted: 02/08/2014] [Indexed: 01/17/2023] Open
Abstract
Chemical analyses, mass spectrometry, and NMR spectroscopy were applied to study the structure of the lipopolysaccharide (LPS) isolated from Aeromonas veronii strain Bs19, serotype O16. ESI-MS revealed that the most abundant LPS glycoforms have tetra-acylated or hexa-acylated lipid A species, consisting of a bisphosphorylated GlcN disaccharide with an AraN residue as a non-stoichiometric substituent, and a core oligosaccharide composed of Hep5Hex3HexN1Kdo1P1. Sugar and methylation analysis together with 1D and 2D 1H and 13C NMR spectroscopy were the main methods used, and revealed that the O-specific polysaccharide (OPS) of A. veronii Bs19 was built up of tetrasaccharide repeating units with the structure: →4)-α-d-Quip3NAc-(1→3)-α-l-Rhap-(1→4)-β-d-Galp-(1→3)-α-d-GalpNAc-(1→. This composition was confirmed by mass spectrometry. The charge-deconvoluted ESI FT-ICR MS recorded for the LPS preparations identified mass peaks of SR- and R-form LPS species, that differed by Δm = 698.27 u, a value corresponding to the calculated molecular mass of one OPS repeating unit (6dHexNAc6dHexHexHexNAc-H2O). Moreover, unspecific fragmentation spectra confirmed the sequence of the sugar residues in the OPS and allowed to assume that the elucidated structure also represented the biological repeating unit.
Collapse
|
10
|
Sturiale L, Palmigiano A, Silipo A, Knirel YA, Anisimov AP, Lanzetta R, Parrilli M, Molinaro A, Garozzo D. Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1135-1142. [PMID: 22124985 DOI: 10.1002/jms.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lipooligosaccharides (LOS) are powerful Gram-negative glycolipids that evade the immune system and invade host animal and vegetal cells. The structural elucidation of LOS is pivotal to understanding the mechanisms of infection at the molecular level. The amphiphilic nature of LOS has been the main obstacle for structural analysis by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Our approach has resolved this important issue and has permitted us to obtain reflectron MALDI mass spectra of LOS to reveal the fine chemical structure with minimal structural variations. The high-quality MALDI mass spectra show LOS species characteristic of molecular ions and defined fragments due to decay in the ion source. The in-source decay yields B-type ions, which correspond to core oligosaccharide(s), and Y-type ions, which are related to lipid A unit(s). MALDI tandem time-of-flight (TOF/TOF) MS of lipid A allowed for the elucidation of its structure directly from purified intact LOS without the need for any chemical manipulations. These findings constitute a significant advancement in the analysis of such an important biomolecule by MALDI MS.
Collapse
Affiliation(s)
- Luisa Sturiale
- CNR Istituto per la Chimica e la Tecnologia dei Polimeri, Via P. Gaifami 18, 95126 Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Carillo S, Pieretti G, Parrilli E, Tutino ML, Gemma S, Molteni M, Lanzetta R, Parrilli M, Corsaro MM. Structural Investigation and Biological Activity of the Lipooligosaccharide from the Psychrophilic Bacterium Pseudoalteromonas haloplanktis TAB 23. Chemistry 2011; 17:7053-60. [DOI: 10.1002/chem.201100579] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Indexed: 11/08/2022]
|
12
|
Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. BIOCHEMISTRY (MOSCOW) 2010; 75:383-404. [PMID: 20618127 DOI: 10.1134/s0006297910040012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
13
|
Abstract
Bacterial lipopolysaccharides (LPSs) are the major component of the outer membrane of Gram-negative bacteria. They have a structural role since they contribute to the cellular rigidity by increasing the strength of cell wall and mediating contacts with the external environment that can induce structural changes to allow life in different conditions. Furthermore, the low permeability of the outer membrane acts as a barrier to protect bacteria from host-derived antimicrobial compounds. Lipopolysaccharides are amphiphilic macromolecules generally comprising three defined regions distinguished by their genetics, structures and function: the lipid A, the core oligosaccharide and a polysaccharide portion, the O-chain. In some Gram-negative bacteria LPS can terminate with the core portion to form rough type LPS (R-LPS, LOS). The core oligosaccharide is an often branched and phosphorylated heterooligosaccharide with less than fifteen sugars, more conserved in the inner region, proximal to the lipid A, and often carrying non-stoichiometric substitutions leading to variation and micro-heterogeneity. The core oligosaccharide contributes to the bacterial viability and stability of the outer membrane, can assure the serological specificity and possesses antigenic properties.
Collapse
|
14
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
15
|
John CM, Liu M, Jarvis GA. Profiles of structural heterogeneity in native lipooligosaccharides of Neisseria and cytokine induction. J Lipid Res 2008; 50:424-438. [PMID: 18832773 DOI: 10.1194/jlr.m800184-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fine differences in the phosphorylation and acylation of lipooligosaccharide (LOS) from Neisseria species are thought to profoundly influence the virulence of the organisms and the innate immune responses of the host, such as signaling through toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells (TREM). MALDI time-of-flight (TOF) mass spectrometry was used to characterize heterogeneity in the native LOS from Neisseria gonorrheae and N. meningitidis. A sample preparation methodology previously reported for Escherichia coli lipopolysaccharide (LPS) employing deposition of untreated LOS on a thin layer of a film composed of 2,4,6-trihydroxyacetophenone and nitrocellulose was used. Prominent peaks were observed corresponding to molecular ions and to fragment ions primarily formed by cleavage between the 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and the lipid A (LA). Analyses of these data and comparison with spectra of the corresponding O-deacylated or hydrogen fluoride-treated LOS enabled the detection of novel species that apparently differed by the expression of up to three phosphates with one or more phosphoethanolamine (PEA) groups on the LA. We found that the heterogeneity profile of acylation and phosphorylation correlates with the induction of proinflammatory cytokines in THP-1 monocytic cells. This methodology enabled us to rapidly profile components of structural variants of native LOS that are of importance biologically.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121
| | - Mingfeng Liu
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121; Department of Laboratory Medicine, University of California, San Francisco, CA 94143.
| |
Collapse
|
16
|
Leone S, Silipo A, L.Nazarenko E, Lanzetta R, Parrilli M, Molinaro A. Molecular structure of endotoxins from Gram-negative marine bacteria: an update. Mar Drugs 2007; 5:85-112. [PMID: 18463721 PMCID: PMC2365688 DOI: 10.3390/md503085] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 09/17/2007] [Indexed: 11/16/2022] Open
Abstract
Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs), or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the gamma-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups), to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments.
Collapse
Affiliation(s)
- Serena Leone
- Dipartimento di Chimica Organica e Biochimica, Università degli studi di Napoli “Federico II”, via Cintia 4, I-80126 Napoli, Italy
| | - Alba Silipo
- Dipartimento di Chimica Organica e Biochimica, Università degli studi di Napoli “Federico II”, via Cintia 4, I-80126 Napoli, Italy
| | - Evgeny L.Nazarenko
- Pacific Institute of Bioorganic Chemistry, Far-East Branch of the Russian Academy of Sciences, 690022 Vladivostok-22, Russian Federation
| | - Rosa Lanzetta
- Dipartimento di Chimica Organica e Biochimica, Università degli studi di Napoli “Federico II”, via Cintia 4, I-80126 Napoli, Italy
| | - Michelangelo Parrilli
- Dipartimento di Chimica Organica e Biochimica, Università degli studi di Napoli “Federico II”, via Cintia 4, I-80126 Napoli, Italy
| | - Antonio Molinaro
- Dipartimento di Chimica Organica e Biochimica, Università degli studi di Napoli “Federico II”, via Cintia 4, I-80126 Napoli, Italy
| |
Collapse
|
17
|
Silipo A, Lanzetta R, Parrilli M, Sturiale L, Garozzo D, Nazarenko EL, Gorshkova RP, Ivanova EP, Molinaro A. The complete structure of the core carbohydrate backbone from the LPS of marine halophilic bacterium Pseudoalteromonas carrageenovora type strain IAM 12662T. Carbohydr Res 2005; 340:1475-82. [PMID: 15878450 DOI: 10.1016/j.carres.2005.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 03/30/2005] [Accepted: 03/31/2005] [Indexed: 11/23/2022]
Abstract
The complete novel structure of the components of the core oligosaccharide fraction from the LOS of the halophilic marine bacterium Pseudoalteromonas carrageenovora was characterized. The fully de-acylated lipooligosaccharide was studied by means of compositional analysis, matrix-assisted laser desorption/ionization mass spectrometry and complete (1)H and (13)C and (31)P NMR spectroscopy. The core oligosaccharide is composed by a mixture of species differing for the length of the sugar chain and the phosphorylation pattern: [carbohydrate structure]; see text. All sugars are D-pyranoses. Hep is L-glycero-D-manno-heptose, Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid, P is phosphate, residues and substituents in italic are not stoichiometrically linked.
Collapse
Affiliation(s)
- Alba Silipo
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sturiale L, Garozzo D, Silipo A, Lanzetta R, Parrilli M, Molinaro A. New conditions for matrix-assisted laser desorption/ionization mass spectrometry of native bacterial R-type lipopolysaccharides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:1829-34. [PMID: 15945032 DOI: 10.1002/rcm.1994] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A new sample preparation method for matrix-assisted laser desorption/ionization (MALDI) analysis of native rough-type lipopolysaccharides (R-type LPSs) is presented. In our MALDI mass spectra, besides the [M--H](-) ions, abundant ions originating from the cleavage between the 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) unit and the lipid A moiety are always present, giving important pieces of information about the structure of the molecules analyzed. Remarkably, in most cases, the comparison of the MALDI mass spectra of the intact R-type LPS with the O-deacylated one allowed us to obtain the structure of the lipid A moiety.
Collapse
Affiliation(s)
- Luisa Sturiale
- CNR-Istituto di Chimica e Tecnologia dei Polimeri, Viale Regina Margherita 6, 95123 Catania, Italy
| | | | | | | | | | | |
Collapse
|