1
|
Aguilera-Garrido A, del Castillo-Santaella T, Yang Y, Galisteo-González F, Gálvez-Ruiz MJ, Molina-Bolívar JA, Holgado-Terriza JA, Cabrerizo-Vílchez MÁ, Maldonado-Valderrama J. Applications of serum albumins in delivery systems: Differences in interfacial behaviour and interacting abilities with polysaccharides. Adv Colloid Interface Sci 2021; 290:102365. [PMID: 33667972 DOI: 10.1016/j.cis.2021.102365] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
One of the major applications of Serum Albumins is their use as delivery systems for lipophilic compounds in biomedicine. Their biomedical application is based on the similarity with Human Serum Albumin (HSA), as a fully biocompatible protein. In general, Bovine Serum Albumin (BSA) is treated as comparable to its human homologue and used as a model protein for fundamental studies since it is available in high amounts and well understood. This protein can act as a carrier for lipophilic compounds or as protective shell in an emulsion-based vehicle. Polysaccharides are generally included in these formulations in order to increase the stability and/or applicability of the carrier. In this review, the main biomedical applications of Albumins as drug delivery systems are first presented. Secondly, the differences between BSA and HSA are highlighted, exploring the similarities and differences between these proteins and their interaction with polysaccharides, both in solution and adsorbed at interfaces. Finally, the use of Albumins as emulsifiers for emulsion-based delivery systems, concretely as Liquid Lipid Nanocapsules (LLNs), is revised and discussed in terms of the differences encountered in the molecular structure and in the interfacial properties. The specific case of Hyaluronic Acid is considered as a promising additive with important applications in biomedicine. The literature works are thoroughly discussed highlighting similarities and differences between BSA and HSA and their interaction with polysaccharides encountered at different structural levels, hence providing routes to control the optimal design of delivery systems.
Collapse
|
2
|
Cano ME, García-Martín A, Ladero M, Lesur D, Pilard S, Kovensky J. A simple procedure to obtain a medium-size oligogalacturonic acids fraction from orange peel and apple pomace wastes. Food Chem 2020; 346:128909. [PMID: 33401083 DOI: 10.1016/j.foodchem.2020.128909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
Pectin oligosaccharides, which can be obtained from fruit wastes, have proven their potential as plant immune-system elicitors. Although the precise size of active species is still under investigation, medium size oligosaccharides have been reported as the most active. Three defined oligogalacturonic acid (OGAs) mixtures were produced from commercial pectin, orange peel and apple pomace residues. The methodology developed involves two sequential acid treatments followed by stepwise ethanol precipitation. Without the need of chromatographic separations, three different fractions were obtained. The fractions were analyzed by high performance anion exchange chromatography (HPAEC) and were completely characterized by mass spectrometry, showing that the small size, medium size and large size fractions contained OGAs of degree of polymerization 3 to 9, 6 to 18, and 16 to 55, respectively.
Collapse
Affiliation(s)
- María Emilia Cano
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources CNRS UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France.
| | - Alberto García-Martín
- Chemical Engineering and Materials Department, Chemistry College, Complutense University, 28040 Madrid, Spain.
| | - Miguel Ladero
- Chemical Engineering and Materials Department, Chemistry College, Complutense University, 28040 Madrid, Spain.
| | - David Lesur
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources CNRS UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France.
| | - Serge Pilard
- Plateforme-Analytique, Institut de Chimie de Picardie CNRS FR 3085, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France.
| | - José Kovensky
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources CNRS UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France.
| |
Collapse
|
3
|
Pfrengle F. Automated Glycan Assembly of Plant Cell Wall Oligosaccharides. Methods Mol Biol 2020; 2149:503-512. [PMID: 32617953 DOI: 10.1007/978-1-0716-0621-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Synthetic cell wall oligosaccharides are promising molecular tools for investigating the structure and function of plant cell walls. Their well-defined structure and high purity prevents misinterpretations of experimental data, and the possibility to introduce chemical handles provides means for easier localization and detection. Automated glycan assembly as emerged has a powerful new method for the efficient preparation of oligosaccharide libraries. We recently made use of this technology to prepare a collection of plant cell wall glycans for cell wall research. In this chapter, detailed experimental procedures for the automated synthesis of oligosaccharides that are ready for use in biological assays are described.
Collapse
Affiliation(s)
- Fabian Pfrengle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
4
|
Zakharova AN, Awan SI, Nami F, Gotfredsen CH, Madsen R, Clausen MH. Synthesis of Two Tetrasaccharide Pentenyl Glycosides Related to the Pectic Rhamnogalacturonan I Polysaccharide. Molecules 2018; 23:molecules23020327. [PMID: 29401687 PMCID: PMC6017268 DOI: 10.3390/molecules23020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 11/29/2022] Open
Abstract
The synthesis of two protected tetrasaccharide pentenyl glycosides with diarabinan and digalactan branching related to the pectic polysaccharide rhamnogalacturonan I is reported. The strategy relies on the coupling of N-phenyl trifluoroacetimidate disaccharide donors to a common rhamnosyl acceptor. The resulting trisaccharide thioglycosides were finally coupled to an n-pentenyl galactoside acceptor to access the two protected branched tetrasaccharides.
Collapse
Affiliation(s)
- Alexandra N Zakharova
- Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Shahid I Awan
- Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Faranak Nami
- Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Robert Madsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Tao S, Jia TW, Yang Y, Chu LQ. BSA-Sugar Conjugates as Ideal Building Blocks for SPR-Based Glycan Biosensors. ACS Sens 2017; 2:57-60. [PMID: 28722428 DOI: 10.1021/acssensors.6b00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Controlled immobilization of sugar probes is of key importance for the development of glycan biosensors. To this end, a series of BSA-sugar conjugates with different numbers of mannose units are prepared via the squaric acid-mediated coupling reaction. The conjugates can absorb directly on gold substrate without any derivation reactions, thus providing a simple and effective method for the construction of SPR-based glycan biosensors. SPR measurements show that the BSA-mannose conjugate with 11 mannoses exhibit the highest affinity to the lectin concanavalin A with a limit of detection of ca. 1.8 nM. Regeneration and specificity of the obtained glycan biosensors are also investigated.
Collapse
Affiliation(s)
- Shun Tao
- College of Chemical Engineering and Materials Science and ‡China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Tian-Wei Jia
- College of Chemical Engineering and Materials Science and ‡China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yang Yang
- College of Chemical Engineering and Materials Science and ‡China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Li-Qiang Chu
- College of Chemical Engineering and Materials Science and ‡China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| |
Collapse
|
6
|
Pistorio SG, Nigudkar SS, Stine KJ, Demchenko AV. HPLC-Assisted Automated Oligosaccharide Synthesis: Implementation of the Autosampler as a Mode of the Reagent Delivery. J Org Chem 2016; 81:8796-8805. [PMID: 27575052 PMCID: PMC5496006 DOI: 10.1021/acs.joc.6b01439] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of a useful methodology for simple, scalable, and transformative automation of oligosaccharide synthesis that easily interfaces with existing methods is reported. The automated synthesis can now be performed using accessible equipment where the reactants and reagents are delivered by the pump or the autosampler and the reactions can be monitored by the UV detector. The HPLC-based platform for automation is easy to setup and adapt to different systems and targets.
Collapse
Affiliation(s)
- Salvatore G. Pistorio
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Swati S. Nigudkar
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
7
|
Fekete A, Eszenyi D, Herczeg M, Pozsgay V, Borbás A. Preparation of synthetic oligosaccharide-conjugates of poly-β-(1→6)-N-acetyl glucosamine. Carbohydr Res 2014; 386:33-40. [DOI: 10.1016/j.carres.2013.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
|
8
|
Pogosyan A, Gottwald A, Michalik D, Endress HU, Vogel C. Efficient synthesis of building blocks for branched rhamnogalacturonan I fragments. Carbohydr Res 2013; 380:9-15. [PMID: 23896158 DOI: 10.1016/j.carres.2013.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/15/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Amayak Pogosyan
- University of Rostock, Institute of Chemistry, Albert-Einstein-Strasse 3a, D-18059 Rostock, Germany
| | | | | | | | | |
Collapse
|
9
|
Kerékgyártó M, Fekete A, Szurmai Z, Kerékgyártó J, Takács L, Kurucz I, Guttman A. Neoglycoproteins as carbohydrate antigens: synthesis, analysis, and polyclonal antibody response. Electrophoresis 2013; 34:2379-86. [PMID: 23765940 DOI: 10.1002/elps.201300052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 12/16/2022]
Abstract
The analysis and polyclonal antibody response for newly synthesized maltose-BSA conjugate neoglycoproteins is described. In this first proof of concept study, a simple carbohydrate antigen, maltose, was linked to BSA by reductive amination. An aglycone spacer was utilized to conserve the intact annular maltose structure and to promote the accessibility of the carbohydrate immunogen hapten during immunization. The neoglycoproteins were investigated by CGE and the number of conjugated maltose residues was determined by MALDI-TOF MS. The neoglycoproteins were then evaluated by immunization of BALB/c mice and the polyclonal antibody response was tested by ELISA as evidence for the presence of sugar-containing epitope-specific antibodies. Selective antibody binding was demonstrated to the synthesized neoglycoproteins with different (low and high) glycosylation degrees suggesting the possible use of this approach to generate antibodies. Moreover, the polyclonal antibody response was not inhibited by maltose or other simple carbohydrates to confirm presence of the neoglycoprotein-specific antibodies.
Collapse
Affiliation(s)
- Márta Kerékgyártó
- Horváth Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
10
|
Ganesh NV, Fujikawa K, Tan YH, Nigudkar SS, Stine KJ, Demchenko AV. Surface-tethered iterative carbohydrate synthesis: a spacer study. J Org Chem 2013; 78:6849-57. [PMID: 23822088 DOI: 10.1021/jo400095u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Comparative study of Surface-Tethered Iterative Carbohydrate Synthesis (STICS) using HPLC-assisted experimental setup clearly demonstrates benefits of using longer spacer-anchoring systems. The use of mixed self-assembled monolayers helps provide the required space for glycosylation reaction around the immobilized glycosyl acceptor. Both extension of the spacer length and using mixed self-assembled monolayers help promote the reaction, and the beneficial effects may include moving the glycosyl acceptor further out into solution and providing additional conformational flexibility. It is possible that surface-immobilized glycosyl acceptors with a longer spacer (C8-O-C8)-lipoic acid have a higher tendency to mimic a solution-phase reaction environment than acceptors with shorter spacers.
Collapse
Affiliation(s)
- N Vijaya Ganesh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| | | | | | | | | | | |
Collapse
|
11
|
Ma Y, Cao X, Yu B. Synthesis of oligosaccharide fragments of the rhamnogalacturonan of Nerium indicum. Carbohydr Res 2013; 377:63-74. [PMID: 23811084 DOI: 10.1016/j.carres.2013.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/07/2013] [Accepted: 05/11/2013] [Indexed: 11/26/2022]
Abstract
Three trisaccharides, one pentasaccharide, and one heptasaccharide, namely α-D-GalA-(1→2)-α-L-Rha-(1→4)-β-D-GalA-OC3H7 (1), α-L-Rha-(1→4)-α-D-GalA-(1→4)-β-D-GalA-OC3H7 (2), α-D-GalA-(1→4)-α-D-GalA-(1→2)-α-L-Rha-OC3H7 (3), α-D-GalA-(1→2)-α-L-Rha-(1→4)-α-D-GalA-(1→2)-α-L-Rha-(1→4)-β-D-GalA-OC3H7 (4), and α-D-GalA-(1→2)-α-L-Rha-(1→4)-α-D-GalA-(1→2)-α-L-Rha-(1→4)-α-D-GalA-(1→2)-α-L-Rha-(1→4)-β-D-GalA-OC3H7 (5), which are relevant to the fragments of the rhamnogalacturonan of Nerium indicum, were concisely synthesized. The syntheses feature highly stereoselective formation of the α-D-GalA-linkage with GalA N-phenyltrifluoroacetimidates as donors.
Collapse
Affiliation(s)
- Yuyong Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
12
|
Use of iodine for efficient and chemoselective glycosylation with glycosyl ortho-alkynylbenzoates as donor in presence of thioglycosides. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Abstract
Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.
Collapse
|
14
|
General procedure for the synthesis of neoglycoproteins and immobilization on epoxide-modified glass slides. Methods Mol Biol 2012; 808:155-65. [PMID: 22057524 DOI: 10.1007/978-1-61779-373-8_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neoglycoproteins, such as BSA-glycosides, contain carbohydrates covalently attached to a protein carrier via nonnaturally occurring linkages. These conjugates have been used for decades to study carbohydrate-protein interactions and are frequently used as immunogens to raise antibodies to carbohydrate antigens. In fact, neoglycoproteins have been used extensively as vaccine antigens and several have obtained FDA approval. More recently, neoglycoproteins have been used in the construction of glycan arrays to produce "neoglycoprotein microarrays." In this chapter, two methods for preparing neoglycoproteins are described along with methods to immobilize these conjugates on epoxide-coated glass microscope slides to produce arrays.
Collapse
|
15
|
Uriel C, Gómez AM, López JC, Fraser-Reid B. Ready access to a branched Man5 oligosaccharide based on regioselective glycosylations of a mannose-tetraol with n-pentenyl orthoesters. Org Biomol Chem 2012; 10:8361-70. [DOI: 10.1039/c2ob26432c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Seyedarabi A, To TT, Ali S, Hussain S, Fries M, Madsen R, Clausen MH, Teixteira S, Brocklehurst K, Pickersgill RW. Structural insights into substrate specificity and the anti beta-elimination mechanism of pectate lyase. Biochemistry 2010; 49:539-46. [PMID: 20000851 DOI: 10.1021/bi901503g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pectate lyases harness anti beta-elimination chemistry to cleave the alpha-1,4 linkage in the homogalacturonan region of plant cell wall pectin. We have studied the binding of five pectic oligosaccharides to Bacillus subtilis pectate lyase in crystals of the inactive enzyme in which the catalytic base is substituted with alanine (R279A). We discover that the three central subsites (-1, +1, and +2) have a profound preference for galacturonate but that the distal subsites can accommodate methylated galacturonate. It is reasonable to assume therefore that pectate lyase can cleave pectin with three consecutive galacturonate residues. The enzyme in the absence of substrate binds a single calcium ion, and we show that two additional calcium ions bind between enzyme and substrate carboxylates occupying the +1 subsite in the Michaelis complex. The substrate binds less intimately to the enzyme in a complex made with a catalytic base in place but in the absence of the calcium ions and an adjacent lysine. In this complex, the catalytic base is correctly positioned to abstract the C5 proton, but there are no calcium ions binding the carboxylate at the +1 subsite. It is clear, therefore, that the catalytic calcium ions and adjacent lysine promote catalysis by acidifying the alpha-proton, facilitating its abstraction by the base. There is also clear evidence that binding distorts the relaxed 2(1) or 3(1) helical conformation of the oligosaccharides in the region of the scissile bond.
Collapse
Affiliation(s)
- Arefeh Seyedarabi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
18
|
Structural characterization of homogalacturonan by NMR spectroscopy—assignment of reference compounds. Carbohydr Res 2008; 343:2830-3. [DOI: 10.1016/j.carres.2008.08.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/05/2008] [Accepted: 08/09/2008] [Indexed: 11/18/2022]
|
19
|
Synthesis of rhamnogalacturonan I fragments by a modular design principle. Carbohydr Res 2008; 343:1730-42. [DOI: 10.1016/j.carres.2008.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/03/2008] [Accepted: 03/12/2008] [Indexed: 11/20/2022]
|
20
|
Fries M, Ihrig J, Brocklehurst K, Shevchik VE, Pickersgill RW. Molecular basis of the activity of the phytopathogen pectin methylesterase. EMBO J 2007; 26:3879-87. [PMID: 17717531 PMCID: PMC2000356 DOI: 10.1038/sj.emboj.7601816] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/11/2007] [Indexed: 11/08/2022] Open
Abstract
We provide a mechanism for the activity of pectin methylesterase (PME), the enzyme that catalyses the essential first step in bacterial invasion of plant tissues. The complexes formed in the crystal using specifically methylated pectins, together with kinetic measurements of directed mutants, provide clear insights at atomic resolution into the specificity and the processive action of the Erwinia chrysanthemi enzyme. Product complexes provide additional snapshots along the reaction coordinate. We previously revealed that PME is a novel aspartic-esterase possessing parallel beta-helix architecture and now show that the two conserved aspartates are the nucleophile and general acid-base in the mechanism, respectively. Other conserved residues at the catalytic centre are shown to be essential for substrate binding or transition state stabilisation. The preferential binding of methylated sugar residues upstream of the catalytic site, and demethylated residues downstream, drives the enzyme along the pectin molecule and accounts for the sequential pattern of demethylation produced by both bacterial and plant PMEs.
Collapse
Affiliation(s)
- Markus Fries
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
| | - Jessica Ihrig
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
| | - Keith Brocklehurst
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
| | - Vladimir E Shevchik
- CNRS, Composante INSA de l'Unite de Microbiologie et de Genetique, UMR 5122 CNRS-INSA-UCB, Bat. Andre Lwoff, Villeurbanne, France
| | - Richard W Pickersgill
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK. Tel.: +44 207 882 6360; Fax: +44 208 983 0973; E-mail:
| |
Collapse
|
21
|
van den Bos LJ, Codée JDC, Litjens REJN, Dinkelaar J, Overkleeft HS, van der Marel GA. Uronic Acids in Oligosaccharide Synthesis. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700101] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leendert J. van den Bos
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Remy E. J. N. Litjens
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jasper Dinkelaar
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
22
|
Schmidt TH, Madsen R. Glycosylations Directed by the Armed-Disarmed Effect with Acceptors Containing a Single Ester Group. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700347] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|