1
|
Multicomponent reaction derived small di- and tri-carbohydrate-based glycomimetics as tools for probing lectin specificity. Glycoconj J 2022; 39:587-597. [PMID: 36001188 DOI: 10.1007/s10719-022-10079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/04/2022]
Abstract
Lectins, carbohydrate-binding proteins, play important functions in all forms of life from bacteria and viruses to plants, animals, and humans, participating in cell-cell communication and pathogen binding. In an attempt to modify lectin functions, artificial lectin ligands were made usually as big dendrimeric or cluster multivalent glycomimetic structures. Here we synthesized a novel set of glycomimetic ligands through protection/deprotection multicomponent reactions (MCR) approach. Multivalent di-and tri-carbohydrate glycomimetics containing D-fructose, D-galactose, and D-allose moieties were prepared in 63-96% yield. MCR glycomimetics demonstrated different binding abilities for plant lectins Con A and UEA I, and human galectin-3. Information gained about the influence of molecule structure, multivalency and optical purity on the lectin binding ability can be used in lectin detection and sensitivity measurements to further facilitate understanding of carbohydrate recognition process.
Collapse
|
2
|
Jakas A, Višnjevac A, Jerić I. Multicomponent Approach to Homo- and Hetero-Multivalent Glycomimetics Bearing Rare Monosaccharides. J Org Chem 2020; 85:3766-3787. [DOI: 10.1021/acs.joc.9b03401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andreja Jakas
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Aleksandar Višnjevac
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivanka Jerić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Mekuria SL, Debele TA, Tsai HC. PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. RSC Adv 2016. [DOI: 10.1039/c6ra12895e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the last several decades, researchers have focused on developing suitable drug carriers to deliver pharmaceutical agents to treat cancer diseases.
Collapse
Affiliation(s)
- Shewaye Lakew Mekuria
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| | - Tilahun Ayane Debele
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| |
Collapse
|
4
|
Fiore M, Daskhan GC, Thomas B, Renaudet O. Orthogonal dual thiol-chloroacetyl and thiol-ene couplings for the sequential one-pot assembly of heteroglycoclusters. Beilstein J Org Chem 2014; 10:1557-63. [PMID: 25161711 PMCID: PMC4142873 DOI: 10.3762/bjoc.10.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/10/2014] [Indexed: 12/14/2022] Open
Abstract
We describe the first one-pot orthogonal strategy to prepare well-defined cyclopeptide-based heteroglycoclusters (hGCs) from glycosyl thiols. Both thiol–chloroactetyl coupling (TCC) and thiol–ene coupling (TEC) have been used to decorate cyclopeptides regioselectively with diverse combination of sugars. We demonstrate that the reaction sequence starting with TCC can be performed one-pot whereas the reverse sequence requires a purification step after the TEC reaction. The versatility of this orthogonal strategy has been demonstrated through the synthesis of diverse hGCs displaying alternating binary combinations of α-D-Man or β-D-GlcNAc, thus providing rapid access to attractive heteroglycosylated platforms for diverse biological applications.
Collapse
Affiliation(s)
- Michele Fiore
- Département de Chimie Moléculaire, UMR-CNRS 5250 & ICMG FR2607, Université Joseph Fourier, PB 53, 38041 Grenoble Cedex 9, France
| | - Gour Chand Daskhan
- Département de Chimie Moléculaire, UMR-CNRS 5250 & ICMG FR2607, Université Joseph Fourier, PB 53, 38041 Grenoble Cedex 9, France
| | - Baptiste Thomas
- Département de Chimie Moléculaire, UMR-CNRS 5250 & ICMG FR2607, Université Joseph Fourier, PB 53, 38041 Grenoble Cedex 9, France
| | - Olivier Renaudet
- Département de Chimie Moléculaire, UMR-CNRS 5250 & ICMG FR2607, Université Joseph Fourier, PB 53, 38041 Grenoble Cedex 9, France ; Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
5
|
Lindhorst TK, Elsner K. Postsynthetic functionalization of glycodendrons at the focal point. Beilstein J Org Chem 2014; 10:1482-7. [PMID: 25161704 PMCID: PMC4142895 DOI: 10.3762/bjoc.10.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/10/2014] [Indexed: 02/03/2023] Open
Abstract
Glycodendrons are multivalent glycoconjugates bearing an orthogonal functional group at the focal point of the molecule. This allows for their postsynthetic elaboration to achieve amphiphilic glycolipid mimetics, for example, which eventually can be applied in biology, biophysics, or material science. Here, postsynthetic modification of di- and tetravalent polyether glycodendrons has been explored using etherification, thiol-ene reaction and in particular olefin cross metathesis.
Collapse
Affiliation(s)
- Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3–4, D-24098 Kiel
| | - Katharina Elsner
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3–4, D-24098 Kiel
| |
Collapse
|
6
|
Jiménez Blanco JL, Ortiz Mellet C, García Fernández JM. Multivalency in heterogeneous glycoenvironments: hetero-glycoclusters, -glycopolymers and -glycoassemblies. Chem Soc Rev 2013; 42:4518-31. [PMID: 22911174 DOI: 10.1039/c2cs35219b] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite efficiently imitating functional ligand presentations in terms of valency and density, most of the reported multivalent carbohydrate prototypes barely reflect the inherent heterogeneity of biological systems, therefore underestimating the potential contribution of synergistic or antagonistic effects to molecular recognition events. To address this question, the design of novel molecular and supramolecular entities displaying different saccharide motifs in a controlled manner is of critical importance. In this review we highlight the current efforts made to synthesize heteromultivalent glycosystems on different platforms (peptides, dendrimers, polymers, oligonucleotides, calixarenes, cyclodextrins, microarrays, vesicles) and to evaluate the influence of heterogeneity in carbohydrate-protein (lectin, antibody) recognition phenomena. Although the number of publications on this topic is limited as compared to the huge volume of reports on homomultivalent sugar displays, the current body of results has already unravelled the existence of new binding mechanisms that operate in heterogeneous environments whose exact biological significance remains to be unveiled.
Collapse
Affiliation(s)
- José L Jiménez Blanco
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain.
| | | | | |
Collapse
|
7
|
Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R. Multivalenz als chemisches Organisations- und Wirkprinzip. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201114] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R. Multivalency as a Chemical Organization and Action Principle. Angew Chem Int Ed Engl 2012; 51:10472-98. [DOI: 10.1002/anie.201201114] [Citation(s) in RCA: 688] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Indexed: 12/26/2022]
|
9
|
Gerland B, Goudot A, Pourceau G, Meyer A, Vidal S, Souteyrand E, Vasseur JJ, Chevolot Y, Morvan F. Synthesis of Homo- and Heterofunctionalized Glycoclusters and Binding to Pseudomonas aeruginosa Lectins PA-IL and PA-IIL. J Org Chem 2012; 77:7620-6. [DOI: 10.1021/jo300826u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Béatrice Gerland
- Institut des Biomolécules
Max Mousseron (IBMM), UMR 5247 CNRS - Université Montpellier 1, Université Montpellier 2, Place
Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France
| | - Alice Goudot
- Institut des Nanotechnologies
de Lyon (INL), Université de Lyon, UMR 5270 CNRS Ecole Centrale de Lyon, 36 Avenue Guy de Collongue,
69134 Ecully Cedex, France
| | - Gwladys Pourceau
- Institut des Biomolécules
Max Mousseron (IBMM), UMR 5247 CNRS - Université Montpellier 1, Université Montpellier 2, Place
Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France
| | - Albert Meyer
- Institut des Biomolécules
Max Mousseron (IBMM), UMR 5247 CNRS - Université Montpellier 1, Université Montpellier 2, Place
Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie
Moléculaires et Supramoléculaires (ICBMS), Laboratoire
de Chimie Organique 2 - Glycochimie, UMR 5246 CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918,
69622 Villeurbanne, France
| | - Eliane Souteyrand
- Institut des Nanotechnologies
de Lyon (INL), Université de Lyon, UMR 5270 CNRS Ecole Centrale de Lyon, 36 Avenue Guy de Collongue,
69134 Ecully Cedex, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules
Max Mousseron (IBMM), UMR 5247 CNRS - Université Montpellier 1, Université Montpellier 2, Place
Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France
| | - Yann Chevolot
- Institut des Nanotechnologies
de Lyon (INL), Université de Lyon, UMR 5270 CNRS Ecole Centrale de Lyon, 36 Avenue Guy de Collongue,
69134 Ecully Cedex, France
| | - François Morvan
- Institut des Biomolécules
Max Mousseron (IBMM), UMR 5247 CNRS - Université Montpellier 1, Université Montpellier 2, Place
Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France
| |
Collapse
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
11
|
Ein Meisterstück in der Synthese: wohldefinierte, multivalente und multimodale dendritische Architekturen für biomedizinische Anwendungen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003968] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Röglin L, Lempens EHM, Meijer EW. A Synthetic “Tour de Force”: Well‐Defined Multivalent and Multimodal Dendritic Structures for Biomedical Applications. Angew Chem Int Ed Engl 2010; 50:102-12. [DOI: 10.1002/anie.201003968] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Lars Röglin
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (The Netherlands), Fax: (+31) 40‐245‐1036
| | - Edith H. M. Lempens
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (The Netherlands), Fax: (+31) 40‐245‐1036
| | - E. W. Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (The Netherlands), Fax: (+31) 40‐245‐1036
| |
Collapse
|
13
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
14
|
Ortega P, Serramía MJ, Muñoz-Fernández MA, Javier de la Mata F, Gómez R. Globular carbosilane dendrimers with mannose groups at the periphery: synthesis, characterization and toxicity in dendritic cells. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.02.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Abstract
From the authors' opinion, this chapter constitutes a modest extension of the seminal and inspiring contribution of Stowell and Lee on neoglycoconjugates published in this series [C. P. Stowell and Y. C. Lee, Adv. Carbohydr. Chem. Biochem., 37 (1980) 225-281]. The outstanding progresses achieved since then in the field of the "glycoside cluster effect" has witnessed considerable creativity in the design and synthetic strategies toward a vast array of novel carbohydrate structures and reflects the dynamic activity in the field even since the recent chapter by the Nicotra group in this series [F. Nicotra, L. Cipolla, F. Peri, B. La Ferla, and C. Radaelli, Adv. Carbohydr. Chem. Biochem., 61 (2007) 353-398]. Beyond the more classical neoglycoproteins and glycopolymers (not covered in this work) a wide range of unprecedented and often artistically beautiful multivalent and monodisperse nanostructures, termed glycodendrimers for the first time in 1993, has been created. This chapter briefly surveys the concept of multivalency involved in carbohydrate-protein interactions. The topic is also discussed in regard to recent steps undertaken in glycobiology toward identification of lead candidates using microarrays and modern analytical tools. A systematic description of glycocluster and glycodendrimer synthesis follows, starting from the simplest architectures and ending in the most complex ones. Presentation of multivalent glycostructures of intermediate size and comprising, calix[n]arene, porphyrin, cyclodextrin, peptide, and carbohydrate scaffolds, has also been intercalated to better appreciate the growing synthetic complexity involved. A subsection describing novel all-carbon-based glycoconjugates such as fullerenes and carbon nanotubes is inserted, followed by a promising strategy involving dendrons self-assembling around metal chelates. The chapter then ends with those glycodendrimers that have been prepared using commercially available dendrimers possessing varied functionalities, or systematically synthesized using either divergent or convergent strategies.
Collapse
|
16
|
Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V. Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems. Chem Rev 2009; 109:6275-540. [DOI: 10.1021/cr900157q] [Citation(s) in RCA: 1066] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Brad M. Rosen
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Christopher J. Wilson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Daniela A. Wilson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Mohammad R. Imam
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|