The role of lic2B in lipopolysaccharide biosynthesis in Haemophilus influenzae strain Eagan.
Carbohydr Res 2011;
346:1262-6. [PMID:
21550597 DOI:
10.1016/j.carres.2011.04.016]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 11/23/2022]
Abstract
Lipopolysaccharide (LPS) biosynthesis in Haemophilus influenzae involves genes from the lic2 locus that are required for chain extension from the middle heptose (HepII) of the conserved triheptosyl inner-core moiety. Lic2C initiates the process by attaching the first glucose to HepII, but the gene encoding for the enzyme adding the next β-D-Glcp- is uncharacterized. Lic2B is the candidate glucosyltransferase; however, in previous investigations, mutation of lic2B resulted in no hexose extension from HepII, likely due to a polar effect on the lic2C gene. In this study we complemented a lic2B knock-out mutant of H. influenzae strain Eagan with a functional lic2C gene and investigated its LPS by mass spectrometry and 2D NMR spectroscopy. Lic2B was found to encode a glucosyltransferase responsible for the linkage of β-D-Glcp-(1→4)-α-D-Glcp-(1→ extending from O-3 of the central heptose of the triheptosyl inner-core moiety, l-α-D-Hepp-(1→2)-[PEtn→6]-l-α-D-Hepp-(1→3)-l-α-D-Hepp-(1→5)-[PPEtn→4]-α-Kdo-(2→6)-lipid A.
Collapse