1
|
A Novel Chitosanase from Penicillium oxalicum M2 for Chitooligosaccharide Production: Purification, Identification and Characterization. Mol Biotechnol 2022; 64:947-957. [PMID: 35262875 DOI: 10.1007/s12033-022-00461-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/06/2022] [Indexed: 01/08/2023]
Abstract
This study discovered a novel chitosanase from Penicillium oxalicum M2 based on a new screening strategy. An extracellular chitosanase was isolated and purified from the fermentation broth of Penicillium oxalicum M2. A 19.34-fold purification was achieved on a cation exchange column. Using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, chitosanase was determined at approximately 42 kDa without any subunits. The sequence of peptide in the protein was identified as SALNKNYITNFSTLR by MALTI-TOF/TOF MS. The maximum catalytic activity of the purified enzyme was 60.45 U/mg at the optimum pH and temperature of 5.5 and 60 °C. The enzyme activity held stability in the range of 35-50 °C and pH 3-4.5. Ca2+, Mn2+, non-ionic surfactants (Tween 20/40/60/80 and Trition X-100) and some common reducing agents (DTT and β-ME) could significantly activate chitosanase. The purified enzyme showed rigorous specificity to chitosan as a substrate. The hydrolysate in the final stage of hydrolysis consisted of chitooligosaccharides with a degree of polymerization ranging from 2 to 5 and without glucosamine or acetylglucosamine. The monomeric enzyme obtained by one-step purification reveal applications potential in sugar industry, and expanded our understanding of the GH75 family chitosanases simultaneously.
Collapse
|
2
|
The crystal structure of an inverting glycoside hydrolase family 9 exo-β-D-glucosaminidase and the design of glycosynthase. Biochem J 2016; 473:463-72. [DOI: 10.1042/bj20150966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/27/2015] [Indexed: 02/04/2023]
Abstract
The crystal structure of an inverting exo-β-D-glucosaminidase from glycoside hydrolase family 9 was determined. This is the first description of the structure of an exo-type enzyme from this family. A glycosynthase was produced from this enzyme through saturation mutagenesis.
Collapse
|
3
|
Qin Z, Xiao Y, Yang X, Mesters JR, Yang S, Jiang Z. A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain glycoside hydrolase family 3 β-N-acetylglucosaminidase. Sci Rep 2015; 5:18292. [PMID: 26669854 PMCID: PMC4680927 DOI: 10.1038/srep18292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022] Open
Abstract
Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions — a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Yibei Xiao
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Xinbin Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Jeroen R Mesters
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Chao CF, Chen YY, Cheng CY, Li YK. Catalytic function of a newly purified exo-β-d-glucosaminidase from the entomopathogenic fungus Paecilomyces lilacinus. Carbohydr Polym 2013; 93:615-21. [DOI: 10.1016/j.carbpol.2012.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 11/15/2022]
|
5
|
Honda Y, Shimaya N, Ishisaki K, Ebihara M, Taniguchi H. Elucidation of exo-β-d-glucosaminidase activity of a family 9 glycoside hydrolase (PBPRA0520) from Photobacterium profundum SS9. Glycobiology 2010; 21:503-11. [DOI: 10.1093/glycob/cwq191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Zhang J, Xia W, Liu P, Cheng Q, Tahirou T, Gu W, Li B. Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 2010; 8:1962-87. [PMID: 20714418 PMCID: PMC2920537 DOI: 10.3390/md8071962] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/29/2010] [Accepted: 06/09/2010] [Indexed: 11/23/2022] Open
Abstract
Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1) enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2) the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3) synthesis of a non-toxic ion ligand--D-Glucosaminic acid from oxidation of D-Glucosamine for cancer and diabetes therapy.
Collapse
Affiliation(s)
- Jiali Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ping Liu
- Jiangsu Animal Husbandry and Veterinary College, Taizhou 225300, Jiangsu, China
| | - Qinyuan Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Talba Tahirou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenxiu Gu
- School of Chemical Engineering, Jiangnan University, Wuxi 214122, China
| | - Bo Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|