1
|
Ardèvol A, Rovira C. Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations. J Am Chem Soc 2015; 137:7528-47. [DOI: 10.1021/jacs.5b01156] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Albert Ardèvol
- Departament
de Química Orgànica and Institut de Química Teòrica
i Computacional (IQTCUB), Universitat de Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
| | - Carme Rovira
- Departament
de Química Orgànica and Institut de Química Teòrica
i Computacional (IQTCUB), Universitat de Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| |
Collapse
|
2
|
Khodabandeh MH, Rezaeianpour S, Davari MD, Sakhaee N, Zare K, Anary M, Naderi F. Quantum chemical study of the equatorial/axial exchange of different substituents in nitrogen and phosphorous-containing 6-membered rings: Role of charge transfer interactions. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1142/s0219633614500473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the nature of equatorial/axial conversion in six-membered rings is important because of involvement of these motifs in some biological systems. In this work we have studied the equatorial/axial exchange of nitrogen and phosphorous bearing six-membered rings with different representative substituents by using quantum chemistry methods. Three possible routes, i.e. heteroatom inversion and two ring flipping modes were considered. The feasibility of equatorial/axial conversion (based on ΔE#) for the substituted piperidine rings with substituents was in the following order; H > CH 3> Cl ~ OH ~ F , whereas for the phosphorous bearing six-membered rings it was H ~ F > OH > Cl ~ CH 3. In the piperidine system hydrogen and methyl substituents preferred the atom inversion route while the other substituents ( Cl , F , OH ) favored C4 site ring flipping in equatorial/axial conversion. For the phosphorous bearing rings, however, phosphorous retards the atom inversion mechanism and heteroatom site ring flipping is the preferred route for all substituents. We demonstrate that charge transfer effect is one of the key factors that determines the favored route in the presence of various substituents. We show how wave function analysis by natural bond orbital (NBO) method can be used as a straightforward technique to explain the most favored route in the equatorial/axial conversion of substituted 6-membered rings.
Collapse
Affiliation(s)
- M. Hassan Khodabandeh
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G.C., Evin 19839-6313, Tehran, Iran
| | - Sedigheh Rezaeianpour
- Department of Chemistry, North Tehran Branch Islamic Azad University, 19585/936 Tehran, Iran
| | - Mehdi D. Davari
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G.C., Evin 19839-6313, Tehran, Iran
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Nader Sakhaee
- Department of Chemistry, Khajeh Nasir Toosi University of Technology, Shariati St., Tehran, Iran
| | - Karim Zare
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G.C., Evin 19839-6313, Tehran, Iran
| | - Mohammad Anary
- Department of Chemistry, Rafsanjan Valie-e-Asr University, P. O. Box 77176, Rafsanjan, Iran
| | - Fereshteh Naderi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Yamane C, Miyamoto H, Hayakawa D, Ueda K. Folded-chain structure of cellulose II suggested by molecular dynamics simulation. Carbohydr Res 2013; 379:30-7. [DOI: 10.1016/j.carres.2013.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/21/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
|
4
|
Barnett CB, Naidoo KJ. Ring puckering: a metric for evaluating the accuracy of AM1, PM3, PM3CARB-1, and SCC-DFTB carbohydrate QM/MM simulations. J Phys Chem B 2010; 114:17142-54. [PMID: 21138284 DOI: 10.1021/jp107620h] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The puckered conformations of furanose and pyranose carbohydrate rings are central to analyzing the action of enzymes on carbohydrates. Enzyme reaction mechanisms are generally inaccessible to experiments and so have become the focus of QM(semiempirical)/MM simulations. We show that the complete free energy of puckering is required to evaluate the accuracy of semiempirical methods used to study reactions involving carbohydrates. Interestingly, we find that reducing the free energy space to lower dimensions results in near meaningless minimum energy pathways. We analyze the furanose and pyranose free energy pucker surfaces and volumes using AM1, PM3, PM3CARB-1, and SCC-DFTB. A comparison with DFT optimized structures and a HF free energy surface reveals that SCC-DFTB provides the best semiempirical description of five- and six-membered carbohydrate ring deformation.
Collapse
Affiliation(s)
- Christopher B Barnett
- Scientific Computing Research Unit and Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | |
Collapse
|
5
|
|
6
|
Modelling of β-d-glucopyranose ring distortion in different force fields: a metadynamics study. Carbohydr Res 2010; 345:530-7. [DOI: 10.1016/j.carres.2009.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/02/2009] [Accepted: 12/11/2009] [Indexed: 12/16/2022]
|