1
|
Yıldırım Y, Telli F, Kahraman E, Gardiner JM. Synthesis, characterization, thermokinetic analysis and biological application of novel allyl glucosamine based glycopolymers. Des Monomers Polym 2023; 26:117-131. [PMID: 37064216 PMCID: PMC10101676 DOI: 10.1080/15685551.2023.2199506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/02/2023] [Indexed: 04/18/2023] Open
Abstract
The synthesis of glycopolymers by copolymerising an allyl glucosamine (AG) monomer with co-monomers methyl methacrylate (MMA), acrylonitrile (AN) and 2-hydroxyethyl methacrylate (HEMA) was investigated via free-radical polymerisation of 2,2-azobisisobutyronitrile (AIBN) in dimethylformamide (DMF). Three new copolymers, poly(AG-co-MMA), poly(AG-co-AN) and poly(AG-co-HEMA), were obtained. The chemical structures of the glycopolymers were analysed using 1H-NMR, 13C-NMR and FTIR. The thermal properties and degradation kinetics of the three glycopolymers were examined by thermogravimetric (TG) analysis at different heating rates. The effects of different co-monomers on the copolymerisation yield, thermal properties and biological activities of the resulting glycopolymers were investigated. The activation energies of the decomposition stages were calculated using the Flynn-Wall-Ozawa (FWO) and Kissinger methods. Furthermore, the biological activity of AG monomers and glycopolymers was studied and compared to chitosan. Poly(AG-co-HEMA) had the most significant effect on MCF-7 cell viability, and all glycopolymers have a low toxic effect profile on MCF-7 cell lines.
Collapse
Affiliation(s)
- Yeliz Yıldırım
- Faculty of Science, Department of Chemistry, Ege University, Bornova, İzmir, Turkey
| | - Fatma Telli
- Faculty of Science, Department of Chemistry, Ege University, Bornova, İzmir, Turkey
| | - Erkan Kahraman
- Atatürk Health Services Vocational School, Ege University, Bornova, İzmir, Turkey
| | - John M. Gardiner
- Department of Chemistry, School of Natural Science University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Pannkuk EL, Laiakis EC, Girgis M, Garty GY, Morton SR, Pujol-Canadell M, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator. J Proteome Res 2021; 20:5145-5155. [PMID: 34585931 DOI: 10.1021/acs.jproteome.1c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important component of ionizing radiation (IR) exposure after a radiological incident may include low-dose rate (LDR) exposures either externally or internally, such as from 137Cs deposition. In this study, a novel irradiation system, VAriable Dose-rate External 137Cs irradiatoR (VADER), was used to expose male and female mice to a variable LDR irradiation over a 30 d time span to simulate fall-out-type exposures in addition to biofluid collection from a reference dose rate (0.8 Gy/min). Radiation markers were identified by untargeted metabolomics and random forests. Mice exposed to LDR exposures were successfully identified from control groups based on their urine and serum metabolite profiles. In addition to metabolites commonly perturbed after IR exposure, we identified and validated a novel metabolite (hexosamine-valine-isoleucine-OH) that increased up to 150-fold after LDR and 80-fold after conventional exposures in urine. A multiplex panel consisting of hexosamine-valine-isoleucine-OH with other urinary metabolites (N6,N6,N6-trimethyllysine, carnitine, 1-methylnicotinamide, and α-ketoglutaric acid) achieved robust classification performance using receiver operating characteristic curve analysis, irrespective of the dose rate or sex. These results show that in terms of biodosimetry, dysregulated energy metabolism is associated with IR exposure for both LDR and conventional IR exposures. These mass spectrometry data have been deposited to the NIH data repository via Metabolomics Workbench with study IDs ST001790, ST001791, ST001792, ST001793, and ST001806.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Evagelia C Laiakis
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Michael Girgis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Guy Y Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10032, United States.,Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shad R Morton
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Albert J Fornace
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
3
|
Sarkar B, Jayaraman N. Glycoconjugations of Biomolecules by Chemical Methods. Front Chem 2020; 8:570185. [PMID: 33330359 PMCID: PMC7672192 DOI: 10.3389/fchem.2020.570185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Bioconjugations under benign aqueous conditions have the most promise to covalently link carbohydrates onto chosen molecular and macromolecular scaffolds. Chemical methodologies relying on C-C and C-heteroatom bond formations are the methods of choice, coupled with the reaction conditions being under aqueous milieu. A number of methods, including metal-mediated, as well as metal-free azide-alkyne cyclo-addition, photocatalyzed thiol-ene reaction, amidation, reductive amination, disulfide bond formation, conjugate addition, nucleophilic addition to vinyl sulfones and vinyl sulfoxides, native chemical ligation, Staudinger ligation, olefin metathesis, and Suzuki-Miyaura cross coupling reactions have been developed, in efforts to conduct glycoconjugation of chosen molecular and biomolecular structures. Within these, many methods require pre-functionalization of the scaffolds, whereas methods that do not require such pre-functionalization continue to be few and far between. The compilation covers synthetic methodology development for carbohydrate conjugation onto biomolecular and biomacromolecular scaffolds. The importance of such glycoconjugations on the functional properties is also covered.
Collapse
Affiliation(s)
- Biswajit Sarkar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
4
|
Yamatani K, Kawatani R, Ajiro H. Synthesis of glucosamine derivative with double caffeic acid moieties at N– and 6-O-positions for developments of natural based materials. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Tremblay T, Robert-Scott G, Bérubé C, Carpentier A, Voyer N, Giguère D. Synthesis of C-terminal glycopeptidesviaoxime resin aminolysis. Chem Commun (Camb) 2019; 55:13741-13744. [DOI: 10.1039/c9cc07481c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We developed a general solid-phase approach to complex C-terminal glycopeptides.
Collapse
Affiliation(s)
- Thomas Tremblay
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| | - Gabrielle Robert-Scott
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| | - Christopher Bérubé
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| | - Antoine Carpentier
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| | - Normand Voyer
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| | - Denis Giguère
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| |
Collapse
|
6
|
Zeng L, Xu G, Gao P, Zhang M, Li H, Zhang J. Design, synthesis and evaluation of a novel class of glucosamine mimetic peptides containing 1,3-dioxane. Eur J Med Chem 2015; 93:109-20. [DOI: 10.1016/j.ejmech.2015.01.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 01/29/2015] [Accepted: 01/31/2015] [Indexed: 11/25/2022]
|
7
|
JO JEONGRANG, PARK YUKYOUNG, JANG BYEONGCHURL. Short-term treatment with glucosamine hydrochloride specifically downregulates hypoxia-inducible factor-1α at the protein level in YD-8 human tongue cancer cells. Int J Oncol 2014; 44:1699-706. [DOI: 10.3892/ijo.2014.2336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/04/2014] [Indexed: 11/06/2022] Open
|
9
|
Zeng L, Zhang J. Design, synthesis, and evaluation of a novel class of 2,3-disubstituted-tetrahydro-β-carboline derivatives. Bioorg Med Chem Lett 2012; 22:3718-22. [DOI: 10.1016/j.bmcl.2012.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/20/2012] [Accepted: 04/04/2012] [Indexed: 01/07/2023]
|