1
|
Long Y, Xiao L, Zhou D, Meng Y, Wang L, Shen D. Promising valorisation method of chitin biomass by producing 5-hydroxymethylfurfural using microwave hydrothermal treatment. ENVIRONMENTAL TECHNOLOGY 2024; 45:4576-4584. [PMID: 37711044 DOI: 10.1080/09593330.2023.2260118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Chitin biomass is the second largest biomass resource on Earth but under-utilized. In this study, pretreated shrimp shells were converted into value-added platform chemical 5-hydroxymethylfurfural (HMF) using microwave hydrothermal treatment. Under the combined pretreatment of acid decalcification at room temperature and microwave-assisted alkali deacetylation, the HMF yield could reach 1.8 wt%. The key process parameters, including the holding temperature, holding time, and pH value, were evaluated and optimised. The highest HMF yield of 6.5 wt% was obtained at 202.6°C at a holding time of 5.8 min and a pH value of 1.5. This result demonstrates the potential of synchronously treating waste and recycling it, thereby offering a highly promising valorisation strategy for chitin-biomass utilisation.
Collapse
Affiliation(s)
- Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Liqun Xiao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
- Hangzhou Shangtuo Environmental Technology Co. Ltd, Hangzhou, People's Republic of China
| | - Dan Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
- Zhejiang Province Ecological Environment Low Carbon Development Center, Hangzhou, People's Republic of China
| | - Yanjun Meng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
- Zhejiang Jiaxing Huanfa Environmental Science and Technology Co. Ltd, Jiaxing, People's Republic of China
| | - Lulu Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Yang L, Shao L, Wu Z, Zhan P, Zhang L. Design and Synthesis of Porous Organic Polymers: Promising Catalysts for Lignocellulose Conversion to 5-Hydroxymethylfurfural and Derivates. Polymers (Basel) 2023; 15:2630. [PMID: 37376276 DOI: 10.3390/polym15122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In the face of the current energy and environmental problems, the full use of biomass resources instead of fossil energy to produce a series of high-value chemicals has great application prospects. 5-hydroxymethylfurfural (HMF), which can be synthesized from lignocellulose as a raw material, is an important biological platform molecule. Its preparation and the catalytic oxidation of subsequent products have important research significance and practical value. In the actual production process, porous organic polymer (POP) catalysts are highly suitable for biomass catalytic conversion due to their high efficiency, low cost, good designability, and environmentally friendly features. Here, we briefly describe the application of various types of POPs (including COFs, PAFs, HCPs, and CMPs) in the preparation and catalytic conversion of HMF from lignocellulosic biomass and analyze the influence of the structural properties of catalysts on the catalytic performance. Finally, we summarize some challenges that POPs catalysts face in biomass catalytic conversion and prospect the important research directions in the future. This review provides valuable references for the efficient conversion of biomass resources into high-value chemicals in practical applications.
Collapse
Affiliation(s)
- Lei Yang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Glucose conversion into hydroxymethylfurfural via ionic liquid-based processes. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
4
|
Kustov LM, Kustov AL, Salmi T. Microwave-Assisted Conversion of Carbohydrates. Molecules 2022; 27:1472. [PMID: 35268573 PMCID: PMC8911892 DOI: 10.3390/molecules27051472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Catalytic conversion of carbohydrates into value-added products and platform chemicals became a trend in recent years. Microwave activation used in the processes of carbohydrate conversion coupled with the proper choice of catalysts makes it possible to enhance dramatically the efficiency and sometimes the selectivity of catalysts. This mini-review presents a brief literature survey related to state-of-the-art methods developed recently by the world research community to solve the problem of rational conversion of carbohydrates, mostly produced from natural resources and wastes (forestry and agriculture wastes) including production of hydrogen, synthesis gas, furanics, and alcohols. The focus is made on microwave technologies used for processing carbohydrates. Of particular interest is the use of heterogeneous catalysts and hybrid materials in processing carbohydrates.
Collapse
Affiliation(s)
- Leonid M. Kustov
- Chemistry Department, Moscow State University, 1 Leninskie Gory, Bldg. 3, 119991 Moscow, Russia;
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Alexander L. Kustov
- Chemistry Department, Moscow State University, 1 Leninskie Gory, Bldg. 3, 119991 Moscow, Russia;
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Tapio Salmi
- Faculty of Science and Engineering, Abo Akademi University, 3 Tuomiokirkontori, FI-20500 Turku, Finland;
| |
Collapse
|
5
|
Bhanja P, Sharma SK, Chongdar S, Paul B, Bhaumik A. Bifunctional crystalline microporous organic polymers: Efficient heterogeneous catalysts for the synthesis of 5-hydroxymethylfurfural. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Delbecq F, Len C. Recent Advances in the Microwave-Assisted Production of Hydroxymethylfurfural by Hydrolysis of Cellulose Derivatives-A Review. Molecules 2018; 23:molecules23081973. [PMID: 30087293 PMCID: PMC6222912 DOI: 10.3390/molecules23081973] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/05/2022] Open
Abstract
The concepts of sustainable development, bioeconomy, and circular economy are being increasingly applied for the synthesis of molecules of industrial interest. Among these molecules, hydroxymethylfurfural as a platform molecule is the subject of various research approaches to improve its synthesis and productivity, and extend its potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of hydroxymethylfurfural production from sugars and polysaccharide feedstocks under microwave-assisted technology. The review discusses advances obtained via microwave activation in major production pathways recently explored, split into the following categories: (i) use of various homogeneous catalysts like mineral or organic acids, metal salts, or ionic liquids; (ii) feedstock dehydration making use of various solid acid catalysts; and (iii) non-catalytic routes.
Collapse
Affiliation(s)
- Frederic Delbecq
- Ecole Superieure de Chimie Organique et Minerale, 60200 Compiegne, France.
| | - Christophe Len
- Universite de Technologie de Compiegne, Sorbonne Universites, 60200 Compiegne, France.
- Chimie ParisTech, PSL University, 75005 Paris, France.
| |
Collapse
|
7
|
Priecel P, Perez Mejia JE, Carà PD, Lopez-Sanchez JA. Microwaves in the Catalytic Valorisation of Biomass Derivatives. SUSTAINABLE CATALYSIS FOR BIOREFINERIES 2018. [DOI: 10.1039/9781788013567-00243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The application of microwave irradiation in the transformation of biomass has been receiving particular interest in recent years due to the use of polar media in such processes and it is now well-known that for biomass conversion, and particularly for lignocellulose hydrolysis, microwave irradiation can dramatically increase reaction rates with no negative consequences on product selectivity. However, it is only in the last ten years that the utilisation of microwaves has been coupled with catalysis aiming towards valorising biomass components or their derivatives via a range of reactions where high selectivity is required in addition to enhanced conversions. The reduced reaction times and superior yields are particularly attractive as they might facilitate the transition towards flow reactors and intensified production. As a consequence, several reports now describe the catalytic transformation of biomass derivatives via hydrogenation, oxidation, dehydration, esterification and transesterification using microwaves. Clearly, this technology has a huge potential for biomass conversion towards chemicals and fuels and will be an important tool within the biorefinery toolkit. The aim of this chapter is to give the reader an overview of the exciting scientific work carried out to date where microwave reactors and catalysis are combined in the transformation of biomass and its derivatives to higher value molecules and products.
Collapse
Affiliation(s)
- Peter Priecel
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Javier Eduardo Perez Mejia
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Piera Demma Carà
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
- MicroBioRefinery Facility, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Jose A. Lopez-Sanchez
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
- MicroBioRefinery Facility, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| |
Collapse
|
8
|
Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem Rev 2017; 118:505-613. [DOI: 10.1021/acs.chemrev.7b00395] [Citation(s) in RCA: 662] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- László T. Mika
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary
| | - Edit Cséfalvay
- Department
of Energy Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Áron Németh
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
9
|
Wang J, Xi J, Xia Q, Liu X, Wang Y. Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes. Sci China Chem 2017. [DOI: 10.1007/s11426-016-9035-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Zhang Z, Song J, Han B. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chem Rev 2016; 117:6834-6880. [PMID: 28535680 DOI: 10.1021/acs.chemrev.6b00457] [Citation(s) in RCA: 375] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Innovative valorization of naturally abundant and renewable lignocellulosic biomass is of great importance in the pursuit of a sustainable future and biobased economy. Ionic liquids (ILs) as an important kind of green solvents and functional fluids have attracted significant attention for the catalytic transformation of lignocellulosic feedstocks into a diverse range of products. Taking advantage of some unique properties of ILs with different functions, the catalytic transformation processes can be carried out more efficiently and potentially with lower environmental impacts. Also, a new product portfolio may be derived from catalytic systems with ILs as media. This review focuses on the catalytic chemical conversion of lignocellulose and its primary ingredients (i.e., cellulose, hemicellulose, and lignin) into value-added chemicals and fuel products using ILs as the reaction media. An outlook is provided at the end of this review to highlight the challenges and opportunities associated with this interesting and important area.
Collapse
Affiliation(s)
- Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| |
Collapse
|
11
|
Roy Goswami S, Dumont MJ, Raghavan V. Microwave Assisted Synthesis of 5-Hydroxymethylfurfural from Starch in AlCl3·6H2O/DMSO/[BMIM]Cl System. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00201] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shrestha Roy Goswami
- Department
of Bioresource
Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X3V9, Canada
| | - Marie-Josée Dumont
- Department
of Bioresource
Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X3V9, Canada
| | - Vijaya Raghavan
- Department
of Bioresource
Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X3V9, Canada
| |
Collapse
|
12
|
Esmaeili N, Zohuriaan-Mehr MJ, Bouhendi H, Bagheri-Marandi G. HMF synthesis in aqueous and organic media under ultrasonication, microwave irradiation and conventional heating. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0031-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Chinnappan A, Baskar C, Kim H. Biomass into chemicals: green chemical conversion of carbohydrates into 5-hydroxymethylfurfural in ionic liquids. RSC Adv 2016. [DOI: 10.1039/c6ra12021k] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biomass is one of the few resources that have the potential to meet the challenges of sustainable and green energy systems.
Collapse
Affiliation(s)
- Amutha Chinnappan
- Department of Energy Science and Technology
- Smart Living Innovation Technology Center
- Myongji University
- Yongin
- Republic of Korea
| | - Chinnappan Baskar
- THDC Institute of Hydropower Engineering and Technology Tehri
- Uttarakhand Technical University
- Dehradun
- India 249001
| | - Hern Kim
- Department of Energy Science and Technology
- Smart Living Innovation Technology Center
- Myongji University
- Yongin
- Republic of Korea
| |
Collapse
|
14
|
Wen C, Shi X, Wang Z, Gao W, Jiang L, Xiao Q, Liu X, Deng F. Effects of metal ions on formation of acrylamide and 5-hydroxymethylfurfural in asparagine-glucose model system. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chao Wen
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; College of Food Science and Technology; Hunan Agricultural University; Changsha Hunan 410128 China
| | - Xingbo Shi
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; College of Food Science and Technology; Hunan Agricultural University; Changsha Hunan 410128 China
| | - Zimeng Wang
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; College of Food Science and Technology; Hunan Agricultural University; Changsha Hunan 410128 China
| | - Wenli Gao
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; College of Food Science and Technology; Hunan Agricultural University; Changsha Hunan 410128 China
| | - Liwen Jiang
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; College of Food Science and Technology; Hunan Agricultural University; Changsha Hunan 410128 China
| | - Qian Xiao
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; College of Food Science and Technology; Hunan Agricultural University; Changsha Hunan 410128 China
| | - Xia Liu
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; College of Food Science and Technology; Hunan Agricultural University; Changsha Hunan 410128 China
| | - Fangming Deng
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; College of Food Science and Technology; Hunan Agricultural University; Changsha Hunan 410128 China
| |
Collapse
|
15
|
Affiliation(s)
- Shrestha Roy Goswami
- Department of Bioresource Engineering; McGill University, Sainte-Anne de Bellevue; Quebec Canada
| | - Marie-Josée Dumont
- Department of Bioresource Engineering; McGill University, Sainte-Anne de Bellevue; Quebec Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering; McGill University, Sainte-Anne de Bellevue; Quebec Canada
| |
Collapse
|
16
|
Yadav KK, Ahmad S, Chauhan SM. Elucidating the role of cobalt phthalocyanine in the dehydration of carbohydrates in ionic liquids. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Shen Y, Sun J, Yi Y, Li M, Wang B, Xu F, Sun R. InCl3-catalyzed conversion of carbohydrates into 5-hydroxymethylfurfural in biphasic system. BIORESOURCE TECHNOLOGY 2014; 172:457-460. [PMID: 25304730 DOI: 10.1016/j.biortech.2014.09.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
InCl3, a water-compatible Lewis acid, was used for the conversion of microcrystalline cellulose to produce 5-hydroxymethylfurfural (HMF) in a H2O/THF biphasic system. Addition of NaCl increased the HMF yield significantly but suppressed the levulinic acid (LA) formation. The HMF yield of 39.7% was obtained in 2h at 200°C in the NaCl-H2O/THF catalytic system catalyzed by InCl3. The catalytic system also showed effectiveness to convert other carbohydrates to HMF, including glucose, fructose, sucrose, starch, which demonstrated great potential towards different feedstocks.
Collapse
Affiliation(s)
- Yue Shen
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Jiankui Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yuxuan Yi
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Bo Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
18
|
Catalytic Transformation of Fructose and Sucrose to HMF with Proline-Derived Ionic Liquids under Mild Conditions. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2014. [DOI: 10.1155/2014/978708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
L-Proline derived ionic liquids (ILs) used as both solvent and catalyst were efficient for transformation of fructose and sucrose to 5-hydroxymethylfurfural (HMF) in the presence of water. Response surface methodology (RSM) was employed to optimize fructose dehydration process, and a maximum HMF yield of 73.6% could be obtained at 90°C after 50 min. The recycling of the IL exhibited an almost constant activity during five successive trials, and a possible reaction mechanism for the dehydration of fructose to HMF was proposed.
Collapse
|