1
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Diard M, Bakkeren E, Lentsch V, Rocker A, Bekele NA, Hoces D, Aslani S, Arnoldini M, Böhi F, Schumann-Moor K, Adamcik J, Piccoli L, Lanzavecchia A, Stadtmueller BM, Donohue N, van der Woude MW, Hockenberry A, Viollier PH, Falquet L, Wüthrich D, Bonfiglio F, Loverdo C, Egli A, Zandomeneghi G, Mezzenga R, Holst O, Meier BH, Hardt WD, Slack E. A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nat Microbiol 2021; 6:830-841. [PMID: 34045711 PMCID: PMC7611113 DOI: 10.1038/s41564-021-00911-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
The ability of gut bacterial pathogens to escape immunity by antigenic variation-particularly via changes to surface-exposed antigens-is a major barrier to immune clearance1. However, not all variants are equally fit in all environments2,3. It should therefore be possible to exploit such immune escape mechanisms to direct an evolutionary trade-off. Here, we demonstrate this phenomenon using Salmonella enterica subspecies enterica serovar Typhimurium (S.Tm). A dominant surface antigen of S.Tm is its O-antigen: a long, repetitive glycan that can be rapidly varied by mutations in biosynthetic pathways or by phase variation4,5. We quantified the selective advantage of O-antigen variants in the presence and absence of O-antigen-specific immunoglobulin A and identified a set of evolutionary trajectories allowing immune escape without an associated fitness cost in naive mice. Through the use of rationally designed oral vaccines, we induced immunoglobulin A responses blocking all of these trajectories. This selected for Salmonella mutants carrying deletions of the O-antigen polymerase gene wzyB. Due to their short O-antigen, these evolved mutants were more susceptible to environmental stressors (detergents or complement) and predation (bacteriophages) and were impaired in gut colonization and virulence in mice. Therefore, a rationally induced cocktail of intestinal antibodies can direct an evolutionary trade-off in S.Tm. This lays the foundations for the exploration of mucosal vaccines capable of setting evolutionary traps as a prophylactic strategy.
Collapse
Affiliation(s)
- Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Department of Zoology, University of Oxford, Oxford, UK
| | - Verena Lentsch
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | | | | | - Daniel Hoces
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Selma Aslani
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Markus Arnoldini
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Flurina Böhi
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Department of Molecular Mechanisms of Disease, University of Zürich, Zürich, Switzerland
| | - Kathrin Schumann-Moor
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Division of Surgical Research, University Hospital of Zürich, Zürich, Switzerland
| | - Jozef Adamcik
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Beth M Stadtmueller
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas Donohue
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK.,Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | - Marjan W van der Woude
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Alyson Hockenberry
- Department of Environmental Microbiology, Eawag, Dubendorf, Switzerland.,Department of Environmental Sciences, ETH Zürich, Zürich, Switzerland
| | - Patrick H Viollier
- Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Daniel Wüthrich
- Infection Biology, University Hospital of Basel, Basel, Switzerland
| | | | - Claude Loverdo
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Adrian Egli
- Infection Biology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Raffaele Mezzenga
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland.,Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Otto Holst
- Forschungszentrum Borstel, Borstel, Germany
| | - Beat H Meier
- Institute for Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland. .,Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Abstract
Tolyporphins, relatively new members of the pigments of life family found in a cyanobacterium, differ in the chromophores, pyrroline substituents, and stereochemistry, yet likely all derive from uroporphyrinogen III.
Collapse
|
4
|
Chiu TW, Peng CJ, Chen MC, Hsu MH, Liang YH, Chiu CH, Fang JM, Lee YC. Constructing conjugate vaccine against Salmonella Typhimurium using lipid-A free lipopolysaccharide. J Biomed Sci 2020; 27:89. [PMID: 32831077 PMCID: PMC7443816 DOI: 10.1186/s12929-020-00681-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Salmonella enterica serotype Typhimurium is a nontyphoidal and common foodborne pathogen that causes serious threat to humans. There is no licensed vaccine to prevent the nontyphoid bacterial infection caused by S. Typhimurium. Methods To develop conjugate vaccines, the bacterial lipid-A free lipopolysaccharide (LFPS) is prepared as the immunogen and used to synthesize the LFPS–linker–protein conjugates 6a–9b. The designed bifunctional linkers 1–5 comprising either an o-phenylenediamine or amine moiety are specifically attached to the exposed 3-deoxy-D-manno-octulosonic acid (Kdo), an α-ketoacid saccharide of LFPS, via condensation reaction or decarboxylative amidation. In addition to bovine serum albumin and ovalbumin, the S. Typhimurium flagellin (FliC) is also used as a self-adjuvanting protein carrier. Results The synthesized conjugate vaccines are characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and fast performance liquid chromatography (FPLC), and their contents of polysaccharides and protein are determined by phenol–sulfuric acid assay and bicinchoninic acid assay, respectively. Enzyme-linked immunosorbent assay (ELISA) shows that immunization of mouse with the LFPS–linker–protein vaccines at a dosage of 2.5 μg is sufficient to elicit serum immunoglobulin G (IgG) specific to S. Typhimurium lipopolysaccharide (LPS). The straight-chain amide linkers in conjugates 7a–9b do not interfere with the desired immune response. Vaccines 7a and 7b derived from either unfractionated LFPS or the high-mass portion show equal efficacy in induction of IgG antibodies. The challenge experiments are performed by oral gavage of S. Typhimurium pathogen, and vaccine 7c having FliC as the self-adjuvanting protein carrier exhibits a high vaccine efficacy of 74% with 80% mice survival rate at day 28 post the pathogen challenge. Conclusions This study demonstrates that lipid-A free lipopolysaccharide prepared from Gram-negative bacteria is an appropriate immunogen, in which the exposed Kdo is connected to bifunctional linkers to form conjugate vaccines. The decarboxylative amidation of Kdo is a novel and useful method to construct a relatively robust and low immunogenic straight-chain amide linkage. The vaccine efficacy is enhanced by using bacterial flagellin as the self-adjuvanting carrier protein. Graphical abstract ![]()
Collapse
Affiliation(s)
- Tzu-Wei Chiu
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Chi-Jiun Peng
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Ming-Cheng Chen
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Mei-Hua Hsu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing St., Guishan Dist, Taoyuan, 33302, Taiwan
| | - Yi-Hua Liang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing St., Guishan Dist, Taoyuan, 33302, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing St., Guishan Dist, Taoyuan, 33302, Taiwan. .,Department of Pediatrics, Chang Gung Children's Hospital, 5, Fuxing St., Guishan Dist, Taoyuan, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Guishan Dist, Taoyuan, 33302, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan. .,The Genomics Research Center, Academia Sinica, 128, Sec. 2, Academia Rd, Taipei, 11529, Taiwan.
| | - Yuan Chuan Lee
- Department of Biology, Johns Hopkins University, 3400 North Charles St, Baltimore, MD, 21218-2685, USA
| |
Collapse
|
5
|
Barel LA, Mulard LA. Classical and novel strategies to develop a Shigella glycoconjugate vaccine: from concept to efficacy in human. Hum Vaccin Immunother 2020; 15:1338-1356. [PMID: 31158047 PMCID: PMC6663142 DOI: 10.1080/21645515.2019.1606972] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Shigella are gram-negative bacteria that cause severe diarrhea and dysentery, with a high level of antimicrobial resistance. Disease-induced protection against reinfection in Shigella-endemic areas provides convincing evidence on the feasibility of a vaccine and on the importance of Shigella lipopolysaccharides as targets of the host humoral protective immune response against disease. This article provides an overview of the original and current strategies toward the development of a Shigella glycan-protein conjugate vaccine that would cover the most commonly detected strains. Going beyond pioneering “lattice”-type polysaccharide-protein conjugates, progress, and challenges are addressed with focus on promising alternatives, which have reached phases I and II clinical trial. Glycoengineered bioconjugates and “sun”-type conjugates featuring well-defined synthetic carbohydrate antigens are discussed with insights on the molecular parameters governing the rational design of a cost-effective glycoconjugate vaccine efficacious in preventing diseases caused by Shigella in the most at risk populations, young children living in endemic areas.
Collapse
Affiliation(s)
- Louis-Antoine Barel
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France.,b Université Paris Descartes , Paris , France
| | - Laurence A Mulard
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France
| |
Collapse
|
6
|
Laguri C, Silipo A, Martorana AM, Schanda P, Marchetti R, Polissi A, Molinaro A, Simorre JP. Solid State NMR Studies of Intact Lipopolysaccharide Endotoxin. ACS Chem Biol 2018; 13:2106-2113. [PMID: 29965728 DOI: 10.1021/acschembio.8b00271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipopolysaccharides (LPS) are complex glycolipids forming the outside layer of Gram-negative bacteria. Their hydrophobic and heterogeneous nature greatly hampers their structural study in an environment similar to the bacterial surface. We have studied LPS purified from E. coli and pathogenic P. aeruginosa with long O-antigen polysaccharides assembled in solution as vesicles or elongated micelles. Solid-state NMR with magic-angle spinning permitted the identification of NMR signals arising from regions with different flexibilities in the LPS, from the lipid components to the O-antigen polysaccharides. Atomic scale data on the LPS enabled the study of the interaction of gentamicin antibiotic bound to P. aeruginosa LPS, for which we could confirm that a specific oligosaccharide is involved in the antibiotic binding. The possibility to study LPS alone and bound to a ligand when it is assembled in membrane-like structures opens great prospects for the investigation of proteins and antibiotics that specifically target such an important molecule at the surface of Gram-negative bacteria.
Collapse
Affiliation(s)
- Cedric Laguri
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Alba Silipo
- University of Naples Federico II, Department of Chemical Sciences, via cintia 4, Napoli, Italy
| | - Alessandra M. Martorana
- University of Milano, Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, Milano, Italy
| | - Paul Schanda
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Roberta Marchetti
- University of Naples Federico II, Department of Chemical Sciences, via cintia 4, Napoli, Italy
| | - Alessandra Polissi
- University of Milano, Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, Milano, Italy
| | - Antonio Molinaro
- University of Naples Federico II, Department of Chemical Sciences, via cintia 4, Napoli, Italy
| | | |
Collapse
|
7
|
Pawlak A, Rybka J, Dudek B, Krzyżewska E, Rybka W, Kędziora A, Klausa E, Bugla-Płoskońska G. Salmonella O48 Serum Resistance is Connected with the Elongation of the Lipopolysaccharide O-Antigen Containing Sialic Acid. Int J Mol Sci 2017; 18:E2022. [PMID: 28934165 PMCID: PMC5666704 DOI: 10.3390/ijms18102022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022] Open
Abstract
Complement is one of the most important parts of the innate immune system. Some bacteria can gain resistance against the bactericidal action of complement by decorating their outer cell surface with lipopolysaccharides (LPSs) containing a very long O-antigen or with specific outer membrane proteins. Additionally, the presence of sialic acid in the LPS molecules can provide a level of protection for bacteria, likening them to human cells, a phenomenon known as molecular mimicry. Salmonella O48, which contains sialic acid in the O-antigen, is the major cause of reptile-associated salmonellosis, a worldwide public health problem. In this study, we tested the effect of prolonged exposure to human serum on strains from Salmonella serogroup O48, specifically on the O-antigen length. After multiple passages in serum, three out of four tested strains became resistant to serum action. The gas-liquid chromatography/tandem mass spectrometry analysis showed that, for most of the strains, the average length of the LPS O-antigen increased. Thus, we have discovered a link between the resistance of bacterial cells to serum and the elongation of the LPS O-antigen.
Collapse
Affiliation(s)
- Aleksandra Pawlak
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, 51-148 Wrocław, Poland.
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, 51-148 Wrocław, Poland.
| | - Eva Krzyżewska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| | - Wojciech Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| | - Anna Kędziora
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, 51-148 Wrocław, Poland.
| | - Elżbieta Klausa
- Regional Centre of Transfusion Medicine and Blood Bank, 50-345 Wrocław, Poland.
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, 51-148 Wrocław, Poland.
| |
Collapse
|
8
|
Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydr Res 2015; 402:87-94. [DOI: 10.1016/j.carres.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023]
|
9
|
Ravenscroft N, Cescutti P, Gavini M, Stefanetti G, MacLennan CA, Martin LB, Micoli F. Structural analysis of the O-acetylated O-polysaccharide isolated from Salmonella paratyphi A and used for vaccine preparation. Carbohydr Res 2014; 404:108-16. [PMID: 25665787 DOI: 10.1016/j.carres.2014.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 01/08/2023]
Abstract
Salmonella paratyphi A is increasingly recognized as a common cause of enteric fever cases and there are no licensed vaccines against this infection. Antibodies directed against the O-polysaccharide of the lipopolysaccharide of Salmonella are protective and conjugation of the O-polysaccharide to a carrier protein represents a promising strategy for vaccine development. O-Acetylation of S. paratyphi A O-polysaccharide is considered important for the immunogenicity of S. paratyphi A conjugate vaccines. Here, as part of a programme to produce a bivalent conjugate vaccine against both S. typhi and S. paratyphi A diseases, we have fully elucidated the O-polysaccharide structure of S. paratyphi A by use of HPLC-SEC, HPAEC-PAD/CD, GLC, GLC-MS, 1D and 2D-NMR spectroscopy. In particular, chemical and NMR studies identified the presence of O-acetyl groups on C-2 and C-3 of rhamnose in the lipopolysaccharide repeating unit, at variance with previous reports of O-acetylation at a single position. Moreover HR-MAS NMR analysis performed directly on bacterial pellets from several strains of S. paratyphi A also showed O-acetylation on C-2 and C-3 of rhamnose, thus this pattern is common and not an artefact from O-polysaccharide purification. Conjugation of the O-polysaccharide to the carrier protein had little impact on O-acetylation and therefore should not adversely affect the immunogenicity of the vaccine.
Collapse
Affiliation(s)
- N Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - P Cescutti
- Department of Life Sciences, Blg. C11, Università di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - M Gavini
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, I-53100 Siena, Italy
| | - G Stefanetti
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, I-53100 Siena, Italy
| | - C A MacLennan
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, I-53100 Siena, Italy
| | - L B Martin
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, I-53100 Siena, Italy
| | - F Micoli
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, I-53100 Siena, Italy.
| |
Collapse
|