1
|
Ma Z, Ensley HE, Lowman DW, Kruppa MD, Williams DL. Recent advances in chemical synthesis of phosphodiester linkages found in fungal mannans. Carbohydr Res 2025; 547:109325. [PMID: 39603178 DOI: 10.1016/j.carres.2024.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Fungal mannans are located on the exterior of the fungal cell wall, where they interact with the environment and, ultimately, the human host. Mannans play a major role in shaping the innate immune response to fungal pathogens. Understanding the phosphodiester linkage and mannosyl repeat units in the acid-labile portion of mannans is crucial for comprehending their structure/activity relationships and for development of anti-fungal vaccines and immunomodulators. The phosphodiester linkages connect the acid-stable and acid-labile portions of the mannan polymer. Phosphate groups are attached to positions 4 and/or 6 of mannosyl repeat units in the acid-stable portion and to position 1 of mannosyl repeat units in the acid-labile portion. This review focuses on the synthesis of phosphodiester linkages as an approach to the development of mannan glycomimetics, which are based on natural product fungal mannans. Development of successful synthetic strategies for the phosphodiester linkages may enable the production of mannan glycomimetics that elicit anti-fungal immune responses against existing and emerging fungal pathogens, such as Candida albicans and Candida auris.
Collapse
Affiliation(s)
- Zuchao Ma
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Drug Discovery and Synthesis Core, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA.
| | - Harry E Ensley
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Drug Discovery and Synthesis Core, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA
| | - Douglas W Lowman
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Drug Discovery and Synthesis Core, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA
| | - Michael D Kruppa
- Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Drug Discovery and Synthesis Core, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA; Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN37614, USA
| |
Collapse
|
2
|
Sano K, Ishii N, Kosugi M, Kuroiwa A, Matsuo I. Efficient synthesis of α(1,2)-linked oligomannoside derivatives through one-pot glycosylation. Carbohydr Res 2020; 494:108072. [PMID: 32563100 DOI: 10.1016/j.carres.2020.108072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 11/28/2022]
Abstract
An α(1,2)-linked oligomannoside derivative having a free C-2 hydroxyl group and a C-3 pivaloyl group was synthesized from a thiophenyl mannose derivative 1 using a one-pot self-condensation and applying a α-stereoselective procedure. The mannosylation exclusively generated α-mannoside linkages. The observed α-directing effect was rationalized by the remote participation of the pivaloyl group in C-3 position. The polymerization degree was controlled by the promoter amount providing the mannobiose derivative as a major product. Applying this method eliminated many synthetic steps. The α(1,2)-linked oligomannoside derivatives, which are key intermediates for the synthesis of oligomannose type N-glycans for glycoproteins, were easily prepared.
Collapse
Affiliation(s)
- Kanae Sano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Misa Kosugi
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ayumi Kuroiwa
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
3
|
Affiliation(s)
- Gustavo A. Kashiwagi
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR)CONICET- Universidad de Buenos Aires Intendente Güiraldes 2160, Pabellón II 3°Piso, Ciudad Universitaria C1428EHA Ciudad Autónoma de Buenos Aires Argentina
- Departamento de QuímicaUniversidad Nacional del Oeste Belgrano 369 San Antonio de Padua Provincia de Buenos Aires Argentina
| |
Collapse
|
4
|
Synthesis and structural features of phosphorylated Artemisia sphaerocephala polysaccharide. Carbohydr Polym 2018; 181:19-26. [DOI: 10.1016/j.carbpol.2017.10.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023]
|
5
|
Krylov VB, Paulovičová L, Paulovičová E, Tsvetkov YE, Nifantiev NE. Recent advances in the synthesis of fungal antigenic oligosaccharides. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe driving force for the constant improvement and development of new synthetic methodologies in carbohydrate chemistry is a growing demand for biologically important oligosaccharide ligands and neoglycoconjugates thereof for numerous biochemical investigations such as cell-to-pathogen interactions, immune response, cell adhesion, etc. Here we report our syntheses of the spacer-armed antigenic oligosaccharides related to three groups of the polysaccharides of the fungal cell-wall including α- and β-mannan, α- and β-glucan and galactomannan chains, which include new rationally designed synthetic blocks, efficient solutions for the stereoselective construction of glycoside bonds, and novel strategy for preparation of furanoside-containing oligosaccharides based on recently discovered pyranoside-into-furanoside (PIF) rearrangement.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Lucia Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Ema Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia,
| |
Collapse
|
6
|
Blockwise synthesis of a pentasaccharide structurally related to the mannan fragment from the Candida albicans cell wall corresponding to the antigenic factor 6. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1251-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Rahkila J, Panchadhayee R, Ardá A, Jiménez-Barbero J, Savolainen J, Leino R. Acetylated Trivalent Mannobioses: Chemical Modification, Structural Elucidation, and Biological Evaluation. ChemMedChem 2016; 11:562-74. [DOI: 10.1002/cmdc.201600076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Jani Rahkila
- Laboratory of Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; Piispankatu 8 20500 Åbo Finland
| | - Rajib Panchadhayee
- Laboratory of Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; Piispankatu 8 20500 Åbo Finland
| | - Ana Ardá
- Structural Biology Unit; CIC bioGUNE; Parque Tecnologico de Bizkaia Building 801A; 48160 Derio Spain
| | - Jesús Jiménez-Barbero
- Structural Biology Unit; CIC bioGUNE; Parque Tecnologico de Bizkaia Building 801A; 48160 Derio Spain
- Ikerbasque, Basque Foundation for Science; Maria Diaz de Haro 3 48009 Bilbao Spain
| | - Johannes Savolainen
- Pulmonary Diseases and Clinical Allergology; University of Turku and Turku University Hospital; 20520 Turku Finland
| | - Reko Leino
- Laboratory of Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; Piispankatu 8 20500 Åbo Finland
| |
Collapse
|
8
|
Karelin AA, Tsvetkov YE, Paulovičová E, Paulovičová L, Nifantiev NE. A Blockwise Approach to the Synthesis of (1→2)-Linked Oligosaccharides Corresponding to Fragments of the Acid-Stable β-Mannan from theCandida albicansCell Wall. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Schubert M, Walczak MJ, Aebi M, Wider G. Posttranslational Modifications of Intact Proteins Detected by NMR Spectroscopy: Application to Glycosylation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Schubert M, Walczak MJ, Aebi M, Wider G. Posttranslational modifications of intact proteins detected by NMR spectroscopy: application to glycosylation. Angew Chem Int Ed Engl 2015; 54:7096-100. [PMID: 25924827 DOI: 10.1002/anie.201502093] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 02/02/2023]
Abstract
Posttranslational modifications (PTMs) are an integral part of the majority of proteins. The characterization of structure and function of PTMs can be very challenging especially for glycans. Existing methods to analyze PTMs require complicated sample preparations and suffer from missing certain modifications, the inability to identify linkage types and thus chemical structure. We present a direct, robust, and simple NMR spectroscopy method for the detection and identification of PTMs in proteins. No isotope labeling is required, nor does the molecular weight of the studied protein limit the application. The method can directly detect modifications on intact proteins without sophisticated sample preparation. This approach is well suited for diagnostics of proteins derived from native organisms and for the quality control of biotechnologically produced therapeutic proteins.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich (Switzerland). .,Present address: Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg (Austria).
| | - Michal J Walczak
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich (Switzerland).
| | - Markus Aebi
- Institute of Microbiology, ETH Zürich, 8093 Zürich (Switzerland)
| | - Gerhard Wider
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich (Switzerland)
| |
Collapse
|
11
|
Dhara D, Kar RK, Bhunia A, Misra AK. Convergent Synthesis and Conformational Analysis of the Hexasaccharide Repeating Unit of theO-Antigen ofShigella flexneriSerotype 1d. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|